-
K. I. Knizhov, I. V. Podvigin, “O skhodimosti integrala Luzina i ego analogov”, Sib. elektron. matem. izv., 16 (2019), 85–95
-
A. G. Kachurovskii, I. V. Podvigin, “Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem”, Math. Notes, 106:1 (2019), 52–62
-
A. G. Kachurovskii, K. I. Knizhov, “Deviations of Fejer sums and rates of convergence in the von Neumann ergodic theorem”, Dokl. Math., 97:3 (2018), 211–214
-
A. G. Kachurovskii, I. V. Podvigin, “Fejer sums for periodic measures and the von Neumann ergodic theorem”, Dokl. Math., 98:1 (2018), 344–347
-
A. G. Kachurovskii, I. V. Podvigin, “Fejer sums and Fourier coefficients of periodic measures”, Dokl. Math., 98:2 (2018), 464–467
-
Fan A., “Almost everywhere convergence of ergodic series”, Ergod. Theory Dyn. Syst., 37:2 (2017), 490–511
-
Kleinbock D., Shi R., Weiss B., “Pointwise equidistribution with an error rate and with respect to unbounded functions”, Math. Ann., 367:1-2 (2017), 857–879
-
A. G. Kachurovskiǐ, I. V. Podvigin, “Large deviations of the ergodic averages: from Hölder continuity to continuity almost everywhere”, Siberian Adv. Math., 28:1 (2018), 23–38
-
I. V. Podvigin, “Estimates for correlation in dynamical systems: from Hölder continuous functions to general observables”, Siberian Adv. Math., 28:3 (2018), 187–206
-
A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303
-
A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Moscow Math. Soc., 77 (2016), 1–53
-
I. V. Podvigin, “On the rate of convergence in the individual ergodic theorem for the action of a semigroup”, Siberian Adv. Math., 26:2 (2016), 139–151
-
Avigad J., Rute J., “Oscillation and the Mean Ergodic Theorem For Uniformly Convex Banach Spaces”, Ergod. Th. Dynam. Sys., 35:4 (2015), 1009–1027
-
Gomilko A., Tomilov Yu., “What Does a Rate in a Mean Ergodic Theorem Imply?”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14:4 (2015), 1305–1336
-
Jean-René Chazottes, Nonlinear Systems and Complexity, 11, Nonlinear Dynamics New Directions, 2015, 47
-
I. V. Podvigin, “On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem”, Math. Notes, 95:4 (2014), 573–576
-
V. V. Sedalishchev, “Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems”, Siberian Math. J., 55:2 (2014), 336–348
-
Sebastian Schweer, Cornelia Wichelhaus, “Nonparametric estimation of the service time distribution in the discrete-time $GI/G/\infty$ queue with partial informat”, Stochastic Processes and their Applications, 2014
-
Haynes A., “Quantitative Ergodic Theorems For Weakly Integrable Functions”, Ergod. Theory Dyn. Syst., 34:2 (2014), 534–542
-
A. G. Kachurovskii, I. V. Podvigin, “Rates of convergence in ergodic theorems for certain billiards and Anosov diffeomorphisms”, Dokl. Math, 88:1 (2013), 385