1. K. I. Knizhov, I. V. Podvigin, “O skhodimosti integrala Luzina i ego analogov”, Sib. elektron. matem. izv., 16 (2019), 85–95  mathnet  crossref
  2. A. G. Kachurovskii, I. V. Podvigin, “Measuring the Rate of Convergence in the Birkhoff Ergodic Theorem”, Math. Notes, 106:1 (2019), 52–62  mathnet  crossref  crossref  mathscinet  isi  elib
  3. A. G. Kachurovskii, K. I. Knizhov, “Deviations of Fejer sums and rates of convergence in the von Neumann ergodic theorem”, Dokl. Math., 97:3 (2018), 211–214  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
  4. A. G. Kachurovskii, I. V. Podvigin, “Fejer sums for periodic measures and the von Neumann ergodic theorem”, Dokl. Math., 98:1 (2018), 344–347  mathnet  crossref  crossref  zmath  isi  scopus
  5. A. G. Kachurovskii, I. V. Podvigin, “Fejer sums and Fourier coefficients of periodic measures”, Dokl. Math., 98:2 (2018), 464–467  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
  6. Fan A., “Almost everywhere convergence of ergodic series”, Ergod. Theory Dyn. Syst., 37:2 (2017), 490–511  crossref  mathscinet  zmath  isi  scopus
  7. Kleinbock D., Shi R., Weiss B., “Pointwise equidistribution with an error rate and with respect to unbounded functions”, Math. Ann., 367:1-2 (2017), 857–879  crossref  mathscinet  zmath  isi  scopus
  8. A. G. Kachurovskiǐ, I. V. Podvigin, “Large deviations of the ergodic averages: from Hölder continuity to continuity almost everywhere”, Siberian Adv. Math., 28:1 (2018), 23–38  mathnet  crossref  crossref  elib
  9. I. V. Podvigin, “Estimates for correlation in dynamical systems: from Hölder continuous functions to general observables”, Siberian Adv. Math., 28:3 (2018), 187–206  mathnet  crossref  crossref  elib
  10. A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303  mathnet  crossref  mathscinet
  11. A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Moscow Math. Soc., 77 (2016), 1–53  mathnet  crossref  elib
  12. I. V. Podvigin, “On the rate of convergence in the individual ergodic theorem for the action of a semigroup”, Siberian Adv. Math., 26:2 (2016), 139–151  mathnet  crossref  crossref  mathscinet  elib
  13. Avigad J., Rute J., “Oscillation and the Mean Ergodic Theorem For Uniformly Convex Banach Spaces”, Ergod. Th. Dynam. Sys., 35:4 (2015), 1009–1027  crossref  mathscinet  zmath  isi  scopus  scopus
  14. Gomilko A., Tomilov Yu., “What Does a Rate in a Mean Ergodic Theorem Imply?”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14:4 (2015), 1305–1336  mathscinet  zmath  isi
  15. Jean-René Chazottes, Nonlinear Systems and Complexity, 11, Nonlinear Dynamics New Directions, 2015, 47  crossref
  16. I. V. Podvigin, “On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem”, Math. Notes, 95:4 (2014), 573–576  mathnet  crossref  crossref  mathscinet  isi  elib
  17. V. V. Sedalishchev, “Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems”, Siberian Math. J., 55:2 (2014), 336–348  mathnet  crossref  mathscinet  isi
  18. Sebastian Schweer, Cornelia Wichelhaus, “Nonparametric estimation of the service time distribution in the discrete-time $GI/G/\infty$ queue with partial informat”, Stochastic Processes and their Applications, 2014  crossref  mathscinet  scopus  scopus
  19. Haynes A., “Quantitative Ergodic Theorems For Weakly Integrable Functions”, Ergod. Theory Dyn. Syst., 34:2 (2014), 534–542  crossref  mathscinet  zmath  isi  scopus  scopus
  20. A. G. Kachurovskii, I. V. Podvigin, “Rates of convergence in ergodic theorems for certain billiards and Anosov diffeomorphisms”, Dokl. Math, 88:1 (2013), 385  crossref  mathscinet  zmath  isi  elib  scopus  scopus
Previous
1
2
3
4
5
6
Next