-
Deuring P., “Oseen Resolvent Estimates With Small Resolvent Parameter”, J. Differ. Equ., 265:1 (2018), 280–311
-
Chang T., Choe H.J., Kang K., “On Maximum Modulus Estimates of the Navier–Stokes Equations With Nonzero Boundary Data”, SIAM J. Math. Anal., 50:3 (2018), 3147–3171
-
Deuring P., “Stability of Stationary Viscous Incompressible Flow Around a Rigid Body Performing a Translation”, J. Math. Fluid Mech., 20:3 (2018), 937–967
-
Han P., “On Weighted Estimates For the Stokes Flows, With Application to the Navier–Stokes Equations”, J. Math. Fluid Mech., 20:3 (2018), 1155–1172
-
G. A. Seregin, T. N. Shilkin, “Liouville-type theorems for the Navier–Stokes equations”, Russian Math. Surveys, 73:4 (2018), 661–724
-
Maremonti P., Shimizu S., “Global Existence of Solutions to 2-D Navier-Stokes Flow With Non-Decaying Initial Data in Half-Plane”, J. Differ. Equ., 265:10 (2018), 5352–5383
-
Chen Yu., Kim S., Yu Y., “Freedericksz Transition in Nematic Liquid Crystal Flows in Dimension Two”, SIAM J. Math. Anal., 50:5 (2018), 4838–4860
-
M. Chernobay, “On type I blow up for the Navier–Stokes equations near the boundary”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 47, K 85-letiyu Vsevoloda Alekseevicha SOLONNIKOVA, Zap. nauchn. sem. POMI, 477, POMI, SPb., 2018, 136–149
-
Tongkeun Chang, Kyungkeun Kang, “Estimates of anisotropic Sobolev spaces with mixed norms for the Stokes system in a half-space”, Ann Univ Ferrara, 64:1 (2018), 47
-
Hao Jia, Vladimir Šverák, Tai-Peng Tsai, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 461
-
Chang T., Jin B.J., “Notes on the Space-Time Decay Rate of the Stokes Flows in the Half Space”, J. Differ. Equ., 263:1 (2017), 240–263
-
Bradshaw Z., Tsai T.-P., “Rotationally Corrected Scaling Invariant Solutions to the Navier–Stokes Equations”, Commun. Partial Differ. Equ., 42:7 (2017), 1065–1087
-
Han P., “Large Time Behavior For the Nonstationary Navier–Stokes Flows in the Half-Space”, 288, 2016, 1–58
-
Zajaczkowski W.M., “Stability of two-dimensional solutions to the Navier–Stokes equations in cylindrical domains under Navier boundary conditions”, J. Math. Anal. Appl., 444:1 (2016), 275–297
-
Chang T., Jin B.J., J. Math. Anal. Appl., 439:1 (2016), 70–90
-
Kozlov V. Rossmann J., “On the nonstationary Stokes system in a cone”, J. Differ. Equ., 260:12 (2016), 8277–8315
-
Korobkov M., Tsai T.-P., “Forward self-similar solutions of the Navier–Stokes equations in the half space”, Anal. PDE, 9:8 (2016), 1811–1827
-
Liu Zh.-x., Yu X.-j., “Long time L 1-behavior for the incompressible magneto-hydrodynamic equations in a half-space”, Acta Math. Appl. Sin.-Engl. Ser., 32:4 (2016), 933–944
-
Hao Jia, Vladimír Šverák, Tai-Peng Tsai, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1
-
Tongkeun Chang, Bum Ja Jin, “Initial and boundary value problem of the unsteady Navier–Stokes system in the half space with Hölder continuous boundary data”, Journal of Mathematical Analysis and Applications, 2015