1. Deuring P., “Oseen Resolvent Estimates With Small Resolvent Parameter”, J. Differ. Equ., 265:1 (2018), 280–311  crossref  mathscinet  zmath  isi
  2. Chang T., Choe H.J., Kang K., “On Maximum Modulus Estimates of the Navier–Stokes Equations With Nonzero Boundary Data”, SIAM J. Math. Anal., 50:3 (2018), 3147–3171  crossref  mathscinet  zmath  isi
  3. Deuring P., “Stability of Stationary Viscous Incompressible Flow Around a Rigid Body Performing a Translation”, J. Math. Fluid Mech., 20:3 (2018), 937–967  crossref  mathscinet  isi  scopus
  4. Han P., “On Weighted Estimates For the Stokes Flows, With Application to the Navier–Stokes Equations”, J. Math. Fluid Mech., 20:3 (2018), 1155–1172  crossref  mathscinet  isi  scopus
  5. G. A. Seregin, T. N. Shilkin, “Liouville-type theorems for the Navier–Stokes equations”, Russian Math. Surveys, 73:4 (2018), 661–724  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  6. Maremonti P., Shimizu S., “Global Existence of Solutions to 2-D Navier-Stokes Flow With Non-Decaying Initial Data in Half-Plane”, J. Differ. Equ., 265:10 (2018), 5352–5383  crossref  mathscinet  zmath  isi  scopus
  7. Chen Yu., Kim S., Yu Y., “Freedericksz Transition in Nematic Liquid Crystal Flows in Dimension Two”, SIAM J. Math. Anal., 50:5 (2018), 4838–4860  crossref  mathscinet  zmath  isi  scopus
  8. M. Chernobay, “On type I blow up for the Navier–Stokes equations near the boundary”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 47, K 85-letiyu Vsevoloda Alekseevicha SOLONNIKOVA, Zap. nauchn. sem. POMI, 477, POMI, SPb., 2018, 136–149  mathnet
  9. Tongkeun Chang, Kyungkeun Kang, “Estimates of anisotropic Sobolev spaces with mixed norms for the Stokes system in a half-space”, Ann Univ Ferrara, 64:1 (2018), 47  crossref
  10. Hao Jia, Vladimir Šverák, Tai-Peng Tsai, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 461  crossref
  11. Chang T., Jin B.J., “Notes on the Space-Time Decay Rate of the Stokes Flows in the Half Space”, J. Differ. Equ., 263:1 (2017), 240–263  crossref  mathscinet  zmath  isi
  12. Bradshaw Z., Tsai T.-P., “Rotationally Corrected Scaling Invariant Solutions to the Navier–Stokes Equations”, Commun. Partial Differ. Equ., 42:7 (2017), 1065–1087  crossref  mathscinet  zmath  isi
  13. Han P., “Large Time Behavior For the Nonstationary Navier–Stokes Flows in the Half-Space”, 288, 2016, 1–58  crossref  mathscinet  zmath  isi  scopus
  14. Zajaczkowski W.M., “Stability of two-dimensional solutions to the Navier–Stokes equations in cylindrical domains under Navier boundary conditions”, J. Math. Anal. Appl., 444:1 (2016), 275–297  crossref  mathscinet  zmath  isi  scopus
  15. Chang T., Jin B.J., J. Math. Anal. Appl., 439:1 (2016), 70–90  crossref  mathscinet  zmath  isi  elib  scopus
  16. Kozlov V. Rossmann J., “On the nonstationary Stokes system in a cone”, J. Differ. Equ., 260:12 (2016), 8277–8315  crossref  mathscinet  zmath  isi  scopus
  17. Korobkov M., Tsai T.-P., “Forward self-similar solutions of the Navier–Stokes equations in the half space”, Anal. PDE, 9:8 (2016), 1811–1827  crossref  mathscinet  zmath  isi  scopus
  18. Liu Zh.-x., Yu X.-j., “Long time L 1-behavior for the incompressible magneto-hydrodynamic equations in a half-space”, Acta Math. Appl. Sin.-Engl. Ser., 32:4 (2016), 933–944  crossref  mathscinet  zmath  isi  scopus
  19. Hao Jia, Vladimír Šverák, Tai-Peng Tsai, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1  crossref
  20. Tongkeun Chang, Bum Ja Jin, “Initial and boundary value problem of the unsteady Navier–Stokes system in the half space with Hölder continuous boundary data”, Journal of Mathematical Analysis and Applications, 2015  crossref  mathscinet  isi
Previous
1
2
3
4
Next