1. Igor Chueshov, Irena Lasiecka, Springer Monographs in Mathematics, Von Karman Evolution Equations, 2010, 447  crossref
  2. Igor Chueshov, Irena Lasiecka, Springer Monographs in Mathematics, Von Karman Evolution Equations, 2010, 337  crossref
  3. T. Yu. Semenova, “Conditions on Determining Functionals for Subsets of Sobolev Space”, Math. Notes, 86:6 (2009), 831–841  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  4. Kalantarov V.K., Titi E.S., “Global attractors and determining modes for the 3D Navier–Stokes-Voight equations”, Chin. Ann. Math. Ser. B, 30:6 (2009), 697–714  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  5. Semenova T.Yu., “A class of determining functionals for quasilinear elliptic problems”, Moscow Univ. Math. Bull., 64:1 (2009), 11–15  crossref  mathscinet  zmath  elib  elib  scopus
  6. Chueshov I., Lasiecka I., Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195, no. 912, 2008, viii+183 pp.  mathscinet  zmath  isi
  7. Ilyin, AA, “The damped-driven 2D Navier–Stokes system on large elongated domains”, Journal of Mathematical Fluid Mechanics, 10:2 (2008), 159  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  8. T. Yu. Semenova, “Approximation by step functions of functions belonging to Sobolev spaces and uniqueness of solutions of differential equations of the form $u''=F(x,u,u')$”, Izv. Math., 71:1 (2007), 149–180  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  9. Okay Çelebi, Davut Uǧurlu, “Determining Functionals for the Strongly Damped Nonlinear Wave Equation”, Journal of Dynamical Systems and Geometric Theories, 5:2 (2007), 105  crossref  mathscinet  zmath
  10. Ilyin, AA, “Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier–Stokes equations”, Journal of Nonlinear Science, 16:3 (2006), 233  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  11. A.V. Babin, Handbook of Dynamical Systems, 1, 2006, 983  crossref
  12. Alexander N. Gorban, Ilya V. Karlin, Lecture Notes in Physics, 660, Invariant Manifolds for Physical and Chemical Kinetics, 2005, 469  crossref
  13. Chueshov, I, “Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Communications in Partial Differential Equations, 29:11–12 (2004), 1847  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  14. Gorban A.N., Karlin I.V., Zinovye A.Yu., “Constructive methods of invariant manifolds for kinetic problems”, Physics Reports-Review Section of Physics Letters, 396:4–6 (2004), 197–403  crossref  mathscinet  isi  elib  scopus  scopus
  15. Chueshov I., Duan Jinqiao, Schmalfuss B., “Determining functionals for random partial differential equations”, NoDEA Nonlinear Differential Equations Appl., 10:4 (2003), 431–454  crossref  mathscinet  zmath  isi  scopus  scopus
  16. Shcherbina A.S., “Gevrey regularity of the global attractor for the dissipative Zakharov system”, Dyn. Syst., 18:3 (2003), 201–225  crossref  mathscinet  zmath  isi  scopus  scopus
  17. Hale J.K., Raugel G., “Regularity, determining modes and Galerkin methods”, J. Math. Pures Appl. (9), 82:9 (2003), 1075–1136  crossref  mathscinet  zmath  isi  scopus
  18. Rekalo A.M., “Asymptotic behavior of solutions of nonlinear parabolic equations on two-layer thin domains”, Nonlinear Anal., 52:5 (2003), 1393–1410  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  19. Chueshov I., Lasiecka I., “Determining functionals for a class of second order in time evolution equations with applications to von Karman equations”, Analysis and Optimization of Differential Systems, International Federation for Information Processing, 121, 2003, 109–122  mathscinet  isi
  20. Igor Chueshov, Irena Lasiecka, IFIP Advances in Information and Communication Technology, 121, Analysis and Optimization of Differential Systems, 2003, 109  crossref
Previous
1
2
3
Next