1. Vladimir Gol'dshtein, Alexander Ukhlov, “On the functional properties of weak (p,q)-quasiconformal homeomorphisms”, UMB, 16:3 (2019), 329  crossref
  2. A. S. Romanov, “Ob ekvivalentnosti oblastei v teorii prostranstv Soboleva s peremennymi pokazatelyami summiruemosti”, Sib. elektron. matem. izv., 15 (2018), 1024–1039  mathnet  crossref
  3. E. A. Sevost'yanov, “On boundary extension and equicontinuity of families of mappings in terms of prime ends”, St. Petersburg Math. J., 30:6 (2019), 973–1005  mathnet  crossref  isi  elib
  4. Vladimir Gol'dshtein, Valerii Pchelintsev, Alexander Ukhlov, “Spectral estimates of the p-Laplace Neumann operator and Brennan's conjecture”, Boll Unione Mat Ital, 11:2 (2018), 245  crossref
  5. D. P. Il'yutko, E. A. Sevost'yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds”, Sb. Math., 207:4 (2016), 537–580  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  6. A. N. Kondrashov, “Izotermicheskie koordinaty na skleikakh”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2016, no. 6(37), 70–80  mathnet  crossref
  7. D. A. Kovtonyuk, V. I. Ryazanov, “Prime ends and the Orlicz–Sobolev classes”, St. Petersburg Math. J., 27:5 (2016), 765–788  mathnet  crossref  mathscinet  isi  elib
  8. Elena Popova, “About one method of extension operator construction”, S&E BMSTU, 14:02 (2014)  crossref
  9. A. A. Egorov, “Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. II”, Vladikavk. matem. zhurn., 16:4 (2014), 41–48  mathnet
  10. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, “Toward the theory of the Orlicz–Sobolev classes”, St. Petersburg Math. J., 25:6 (2014), 929–963  mathnet  crossref  mathscinet  zmath  isi  elib
  11. J. M. Ball, “Global invertibility of Sobolev functions and the interpenetration of matter”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 88:3-4 (2011), 315  crossref
  12. I. M. Pupyshev, “The Extension of Functions of Sobolev Classes Beyond the Boundary of the Domain on Carnot Groups”, Siberian Adv. Math., 18:2 (2008), 124–141  mathnet  crossref  mathscinet  elib  elib
  13. S. A. Imomkulov, “On holomorphic continuation of functions defined on a pencil of boundary complex lines”, Izv. Math., 69:2 (2005), 345–363  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  14. S. K. Vodop'yanov, A. D.-O. Ukhlov, “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II”, Siberian Adv. Math., 15:1 (2005), 91–125  mathnet  mathscinet  zmath  elib
  15. John M. Ball, Geometry, Mechanics, and Dynamics, 2002, 3  crossref
  16. Nahum Zobin, “Extension of smooth functions from finitely connected planar domains”, J Geom Anal, 9:3 (1999), 491  crossref
  17. Nahum Zobin, “Whitney's Problem on Extendability of Functions and an Intrinsic Metric”, Advances in Mathematics, 133:1 (1998), 96  crossref
  18. Nikolai Nadirashvili, “Berger's isoperimetric problem and minimal immersions of surfaces”, GAFA Geom funct anal, 6:5 (1996), 877  crossref  mathscinet  isi  elib
  19. Franco Tomarelli, “A quasi-variational problem in nonlinear elasticity”, Annali di Matematica, 158:1 (1991), 331  crossref  mathscinet  zmath  isi
  20. Studies in Mathematics and Its Applications, 20, Mathematical Elasticity Volume I: Three-Dimensional Elasticity, 1988, 409  crossref
Previous
1
2
3
Next