1. Jaume Llibre, “On the C1 non-integrability of the autonomous differential systems”, Nonlinear Analysis: Real World Applications, 74 (2023), 103943  crossref
  2. A. A. Burov, “Motion of a Variable Body with a Fixed Point in a Time-dependent Force Field”, Prikladnaya matematika i mekhanika, 87:6 (2023), 984  crossref
  3. Caleb Rotello, Eric B. Jones, Peter Graf, Eliot Kapit, “Automated detection of symmetry-protected subspaces in quantum simulations”, Phys. Rev. Research, 5:3 (2023)  crossref
  4. Shoya Motonaga, Kazuyuki Yagasaki, “Obstructions to Integrability of Nearly Integrable Dynamical Systems Near Regular Level Sets”, Arch Rational Mech Anal, 247:3 (2023)  crossref
  5. A. P. Markeev, “On Splitting of Separatrices Corresponding to the Operating Mode of the Watt Governor”, Mech. Solids, 58:8 (2023), 2731  crossref
  6. M. V. Shamolin, “Integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei raznogo znaka”, Tr. sem. im. I. G. Petrovskogo, 33, Izdatelstvo Moskovskogo universiteta, M., 2023, 424–464  mathnet
  7. M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 205, VINITI RAN, M., 2022, 22–54  mathnet  crossref
  8. M. V. Shamolin, “Sistemy s chetyrmya stepenyami svobody s dissipatsiei: analiz i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 205, VINITI RAN, M., 2022, 55–94  mathnet  crossref
  9. M. V. Shamolin, “Sistemy s pyatyu stepenyami svobody s dissipatsiei: analiz i integriruemost. I. Porozhdayuschaya zadacha iz dinamiki mnogomernogo tverdogo tela, pomeschennogo v nekonservativnoe pole sil”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 208, VINITI RAN, M., 2022, 91–121  mathnet  crossref
  10. M. V. Shamolin, “Sistemy s pyatyu stepenyami svobody s dissipatsiei: analiz i integriruemost. II. Dinamicheskie sistemy na kasatelnykh rassloeniyakh”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 209, VINITI RAN, M., 2022, 88–107  mathnet  crossref
  11. M. V. Shamolin, “Nekotorye tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii dvumernogo mnogoobraziya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 209, VINITI RAN, M., 2022, 108–116  mathnet  crossref
  12. M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. I. Uravneniya geodezicheskikh”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 210, VINITI RAN, M., 2022, 77–95  mathnet  crossref
  13. M. V. Shamolin, “Nekotorye tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 210, VINITI RAN, M., 2022, 96–105  mathnet  crossref
  14. M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. II. Potentsialnye silovye polya”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 211, VINITI RAN, M., 2022, 29–40  mathnet  crossref
  15. M. V. Shamolin, “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. I. Porozhdayuschaya zadacha iz dinamiki mnogomernogo tverdogo tela, pomeschennogo v nekonservativnoe pole sil”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 211, VINITI RAN, M., 2022, 41–74  mathnet  crossref
  16. M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. III. Silovye polya s dissipatsiei”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 212, VINITI RAN, M., 2022, 120–138  mathnet  crossref
  17. M. V. Shamolin, “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. II. Obschii klass dinamicheskikh sistem na kasatelnom rassloenii mnogomernoi sfery”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 212, VINITI RAN, M., 2022, 139–148  mathnet  crossref
  18. M. V. Shamolin, “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. III. Sistemy na kasatelnykh rassloeniyakh gladkikh $n$-mernykh mnogoobrazii”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 213, VINITI RAN, M., 2022, 96–109  mathnet  crossref
  19. M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. I. Uravneniya geodezicheskikh na kasatelnom rassloenii gladkogo $n$-mernogo mnogoobraziya”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 214, VINITI RAN, M., 2022, 82–106  mathnet  crossref  mathscinet
  20. M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. II. Uravneniya dvizheniya na kasatelnom rassloenii k $n$-mernomu mnogoobraziyu v potentsialnom silovom pole”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 215, VINITI RAN, M., 2022, 81–94  mathnet  crossref
Previous
1
2
3
4
5
6
13
Next