-
V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173
-
V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363
-
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107
-
A. T. Fomenko, V. V. Vedyushkina, “Singularities of integrable Liouville systems, reduction of integrals to lower degree and topological billiards: recent results”, Theor. Appl. Mech., 46:1 (2019), 47–63
-
Fomenko A.T., Vedyushkina V.V., “Implementation of Integrable Systems By Topological, Geodesic Billiards With Potential and Magnetic Field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
-
E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci., 259:5 (2021), 656–675
-
V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727
-
V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5
-
V. A. Moskvin, “Topology of Liouville bundles of integrable billiard in non-convex domains”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 73:3 (2018), 103–110
-
V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733
-
V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507
-
V. Dragović, M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, J. Math. Sci., 223:6 (2017), 686–694
-
V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow University Mathematics Bulletin, 69:4 (2014), 148–158
-
V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221
-
Vladimir Dragović, Milena Radnović, “Pseudo-integrable billiards and arithmetic dynamics”, Journal of Modern Dynamics, 8:1 (2014), 109
-
Anatoly T. Fomenko, Andrei Konyaev, Solid Mechanics and Its Applications, 211, Continuous and Distributed Systems, 2014, 3
-
SÔNIA PINTO-DE-CARVALHO, RAFAEL RAMÍREZ-ROS, “Non-persistence of resonant caustics in perturbed elliptic billiards”, Ergod. Th. Dynam. Sys., 33:6 (2013), 1876
-
Pablo S. Casas, Rafael Ramírez-Ros, “Classification of symmetric periodic trajectories in ellipsoidal billiards”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22:2 (2012)
-
Marko Budišić, Ryan Mohr, Igor Mezić, “Applied Koopmanism”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22:4 (2012)
-
Pablo S. Casas, Rafael Ramírez-Ros, “The Frequency Map for Billiards inside Ellipsoids”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 278