-
Alexander Bihlo, Jean-Christophe Nave, “Invariant Discretization Schemes Using Evolution–Projection Techniques”, SIGMA, 9 (2013), 052, 23 pp.
-
Elizabeth Mansfield, Gloria Marí Beffa, Jing Ping Wang, “Discrete Moving Frames and Discrete Integrable Systems”, Found Comput Math, 13:4 (2013), 545
-
Francis Valiquette, “Inductive Moving Frames”, Results. Math., 64:1-2 (2013), 37
-
Raphaël Rebelo, Francis Valiquette, “Symmetry preserving numerical schemes for partial differential equations and their numerical tests”, Journal of Difference Equations and Applications, 19:5 (2013), 738
-
Peter J. Olver, “Recursive Moving Frames”, Results. Math., 60:1-4 (2011), 423
-
Hongbo Li, Ruiyong Sun, Shoubin Yao, Ge Li, Proceedings of the 36th international symposium on Symbolic and algebraic computation, 2011, 217
-
Peter J. Olver, Symmetries and Integrability of Difference Equations, 2011, 207
-
Elizabeth Mansfield, Jun Zhao, Guide to Geometric Algebra in Practice, 2011, 411
-
Pilwon Kim, “Invariantization of the Crank–Nicolson method for Burgers' equation”, Physica D: Nonlinear Phenomena, 237:2 (2008), 243
-
Dina Razafindralandy, Aziz Hamdouni, “Invariant subgrid modelling in large-eddy simulation of heat convection turbulence”, Theor. Comput. Fluid Dyn., 21:4 (2007), 231
-
Martin Welk, Pilwon Kim, Peter J. Olver, Lecture Notes in Computer Science, 4485, Scale Space and Variational Methods in Computer Vision, 2007, 508
-
Pilwon Kim, “Invariantization of numerical schemes using moving frames”, Bit Numer Math, 47:3 (2007), 525
-
Dina Razafindralandy, Aziz Hamdouni, “Consequences of Symmetries on the Analysis and Construction of Turbulence Models”, SIGMA, 2 (2006), 052, 20 pp.
-
Peter J. Olver, Lecture Notes in Computer Science, 3519, Computer Algebra and Geometric Algebra with Applications, 2005, 105