-
Benson J., Valiquette F., “Invariant Discrete Flows”, Stud. Appl. Math., 143:1 (2019), 81–119
-
Olver P.J., Valiquette F., “Recursive Moving Frames For Lie Pseudo-Groups”, Results Math., 73:2 (2018), UNSP 57
-
Joseph Benson, Francis Valiquette, “Symmetry reduction of ordinary finite difference equations using moving frames”, J. Phys. A: Math. Theor., 50:19 (2017), 195201
-
Junfeng Song, Changzheng Qu, Ruoxia Yao, “Integrable systems and invariant curve flows in symplectic Grassmannian space”, Physica D: Nonlinear Phenomena, 349 (2017), 1
-
Alexander Bihlo, Francis Valiquette, Symmetries and Integrability of Difference Equations, 2017, 261
-
B. Miro, D. Rose, F. Valiquette, “Equivalence of one-dimensional second-order linear finite difference operators”, Journal of Difference Equations and Applications, 22:10 (2016), 1524
-
Robert Milson, Francis Valiquette, “Point equivalence of second-order ODEs: Maximal invariant classification order”, Journal of Symbolic Computation, 67 (2015), 16
-
YanYan Li, ChangZheng Qu, “Symplectic invariants for curves and integrable systems in similarity symplectic geometry”, Sci. China Math., 58:7 (2015), 1415
-
Changzheng Qu, Jingwei Han, Jing Kang, “Bäcklund Transformations for Integrable Geometric Curve Flows”, Symmetry, 7:3 (2015), 1376
-
José del Amor, Ángel Giménez, Pascual Lucas, “A Lie algebra structure on variation vector fields along curves in 2-dimensional space forms”, Journal of Geometry and Physics, 88 (2015), 94
-
Changzheng Qu, Junfeng Song, Ruoxia Yao, “Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries”, SIGMA, 9 (2013), 001, 19 pp.
-
Francis Valiquette, “Geometric affine symplectic curve flows in R4”, Differential Geometry and its Applications, 30:6 (2012), 631
-
Junfeng Song, Changzheng Qu, “Integrable systems and invariant curve flows in centro-equiaffine symplectic geometry”, Physica D: Nonlinear Phenomena, 241:4 (2012), 393
-
Peter J. Olver, “Recursive Moving Frames”, Results. Math., 60:1-4 (2011), 423