1. Benson J., Valiquette F., “Invariant Discrete Flows”, Stud. Appl. Math., 143:1 (2019), 81–119  crossref  mathscinet  zmath  isi  scopus
  2. Olver P.J., Valiquette F., “Recursive Moving Frames For Lie Pseudo-Groups”, Results Math., 73:2 (2018), UNSP 57  crossref  mathscinet  isi  scopus
  3. Joseph Benson, Francis Valiquette, “Symmetry reduction of ordinary finite difference equations using moving frames”, J. Phys. A: Math. Theor., 50:19 (2017), 195201  crossref
  4. Junfeng Song, Changzheng Qu, Ruoxia Yao, “Integrable systems and invariant curve flows in symplectic Grassmannian space”, Physica D: Nonlinear Phenomena, 349 (2017), 1  crossref
  5. Alexander Bihlo, Francis Valiquette, Symmetries and Integrability of Difference Equations, 2017, 261  crossref
  6. B. Miro, D. Rose, F. Valiquette, “Equivalence of one-dimensional second-order linear finite difference operators”, Journal of Difference Equations and Applications, 22:10 (2016), 1524  crossref
  7. Robert Milson, Francis Valiquette, “Point equivalence of second-order ODEs: Maximal invariant classification order”, Journal of Symbolic Computation, 67 (2015), 16  crossref
  8. YanYan Li, ChangZheng Qu, “Symplectic invariants for curves and integrable systems in similarity symplectic geometry”, Sci. China Math., 58:7 (2015), 1415  crossref
  9. Changzheng Qu, Jingwei Han, Jing Kang, “Bäcklund Transformations for Integrable Geometric Curve Flows”, Symmetry, 7:3 (2015), 1376  crossref
  10. José del Amor, Ángel Giménez, Pascual Lucas, “A Lie algebra structure on variation vector fields along curves in 2-dimensional space forms”, Journal of Geometry and Physics, 88 (2015), 94  crossref
  11. Changzheng Qu, Junfeng Song, Ruoxia Yao, “Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries”, SIGMA, 9 (2013), 001, 19 pp.  mathnet  crossref  mathscinet
  12. Francis Valiquette, “Geometric affine symplectic curve flows in R4”, Differential Geometry and its Applications, 30:6 (2012), 631  crossref
  13. Junfeng Song, Changzheng Qu, “Integrable systems and invariant curve flows in centro-equiaffine symplectic geometry”, Physica D: Nonlinear Phenomena, 241:4 (2012), 393  crossref
  14. Peter J. Olver, “Recursive Moving Frames”, Results. Math., 60:1-4 (2011), 423  crossref
Previous
1
2