1. Akram Aldroubi, Keaton Hamm, Ahmet Bugra Koku, Ali Sekmen, “CUR Decompositions, Similarity Matrices, and Subspace Clustering”, Front. Appl. Math. Stat., 4 (2019)  crossref
  2. Litzinger F., Boninsegna L., Wu H., Nuske F., Patel R., Baraniuk R., Noe F., Clementi C., “Rapid Calculation of Molecular Kinetics Using Compressed Sensing”, J. Chem. Theory Comput., 14:5 (2018), 2771–2783  crossref  isi  scopus  scopus
  3. Luo Ch., Zhang Y., Lin H., “Efficient and Memory Saving Method Based on Pseudoskeleton Approximation For Analysis of Finite Periodic Structures”, Int. J. Antennas Propag., 2018, 1612498  crossref  isi
  4. Georgieva I. Hofreither C., “An algorithm for low-rank approximation of bivariate functions using splines”, J. Comput. Appl. Math., 310 (2017), 80–91  crossref  mathscinet  zmath  isi  elib  scopus
  5. Kumar N.K., Schneider J., “Literature Survey on Low Rank Approximation of Matrices”, Linear Multilinear Algebra, 65:11 (2017), 2212–2244  crossref  mathscinet  zmath  isi  scopus  scopus
  6. Boutsidis Ch., Woodruff D.P., “Optimal Cur Matrix Decompositions”, SIAM J. Comput., 46:2 (2017), 543–589  crossref  mathscinet  zmath  isi  scopus  scopus
  7. Ali Sekmen, Akram Aldroubi, Ahmet Bugra Koku, Keaton Hamm, 2017 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 2017, 1  crossref
  8. Mikhalev A.Yu., Oseledets I.V., “Iterative Representing Set Selection For Nested Cross Approximation”, Numer. Linear Algebr. Appl., 23:2 (2016), 230–248  crossref  mathscinet  zmath  isi  scopus  scopus
  9. Litsarev M.S., Oseledets I.V., “a Low-Rank Approach To the Computation of Path Integrals”, J. Comput. Phys., 305 (2016), 557–574  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  10. Mach T., Reichel L., Van Barel M., Vandebril R., “Adaptive cross approximation for ill-posed problems”, J. Comput. Appl. Math., 303 (2016), 206–217  crossref  mathscinet  zmath  isi  elib  scopus
  11. Cichocki A., Lee N., Oseledets I., Anh-Huy Phan, Zhao Q., Mandic D.P., “Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions”, Found. Trends Mach. Learn., 9:4-5 (2016), I+  crossref  isi  scopus
  12. Bigoni D., Engsig-Karup A.P., Marzouk Y.M., “Spectral Tensor-Train Decomposition”, SIAM J. Sci. Comput., 38:4 (2016), A2405–A2439  crossref  mathscinet  zmath  isi  elib  scopus
  13. Victor Y. Pan, Liang Zhao, Lecture Notes in Computer Science, 9691, Computer Science – Theory and Applications, 2016, 352  crossref
  14. Cichocki A., Mandic D.P., Anh Huy Phan, Caiafa C.F., Zhou G., Zhao Q., De Lathauwer L., “Tensor Decompositions For Signal Processing Applications”, IEEE Signal Process. Mag., 32:2 (2015), 145–163  crossref  adsnasa  isi  scopus  scopus
  15. Biagioni D.J., Beylkin D., Beylkin G., “Randomized Interpolative Decomposition of Separated Representations”, J. Comput. Phys., 281 (2015), 116–134  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  16. Litsarev M.S., Oseledets I.V., “Fast Low-Rank Approximations of Multidimensional Integrals in Ion-Atomic Collisions Modelling”, Numer. Linear Algebr. Appl., 22:6, SI (2015), 1147–1160  crossref  mathscinet  zmath  isi  scopus  scopus
  17. Grasedyck L., Kriemann R., Loebbert Ch., Naegel A., Wittum G., Xylouris K., “Parallel Tensor Sampling in the Hierarchical Tucker Format”, Comput. Vis. Sci., 17:2 (2015), 67–78  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  18. Yong Zhang, Hai Lin, “LOCALIZED PSEUDO-SKELETON APPROXIMATION METHOD FOR ELECTROMAGNETIC ANALYSIS ON ELECTRICALLY LARGE OBJECTS”, PIER Letters, 57 (2015), 103  crossref
  19. Vervliet N., Debals O., Sorber L., De lathauwer L., “Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors”, IEEE Signal Process. Mag., 31:5 (2014), 71–79  crossref  adsnasa  isi  scopus  scopus
  20. Savostyanov D.V., “Quasioptimality of Maximum-Volume Cross Interpolation of Tensors”, Linear Alg. Appl., 458 (2014), 217–244  crossref  mathscinet  zmath  isi  scopus  scopus
Previous
1
2
3
4
Next