-
Lina Ji, Changzheng Qu, “Conditional Lie–Bäcklund Symmetries and Invariant Subspaces to Nonlinear Diffusion Equations with Convection and Source”, Stud Appl Math, 131:3 (2013), 266
-
琼 吴, “The Exact Solutions of a Class of the Nonlinear Diffusion Equations under the Generalized Conditional Symmetry”, PM, 03:05 (2013), 289
-
Milena Dimova, Stefka Dimova, Daniela Vasileva, “Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium”, Open Mathematics, 11:8 (2013)
-
Stefka Dimova, Milena Dimova, Daniela Vasileva, Springer Proceedings in Mathematics & Statistics, 45, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, 2013, 157
-
V A Vladimirov, E V Kutafina, B Zorychta, “On the non-local hydrodynamic-type system and its soliton-like solutions”, J. Phys. A: Math. Theor., 45:8 (2012), 085210
-
Lina Ji, “Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations with source”, Physica A: Statistical Mechanics and its Applications, 391:24 (2012), 6320
-
Lina Ji, Xiangwei Zhang, Rong Yan, “Conditional Lie–Bäcklund symmetries and sign-invariants to second-order evolution equations”, Communications in Nonlinear Science and Numerical Simulation, 17:9 (2012), 3476
-
Jing Kang, Chang-Zheng Qu, “Symmetry groups and Gauss kernels of Schrödinger equations”, Chinese Phys. B, 21:2 (2012), 020301
-
S. E. MATSKEVICH, “BURGERS EQUATION AND KOLMOGOROV–PETROVSKY–PISKUNOV EQUATION ON MANIFOLDS”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 14:02 (2011), 199
-
M. V. Neshchadim, “Conservation laws for a system of diffusion reaction type with one spatial variable”, J. Appl. Industr. Math., 5:3 (2011), 400–405
-
Zuo Su-Li, Qu Chang-Zheng, “Solutions and Conditional Lie–Bäcklund Symmetries of Quasi-linear Diffusion-Reaction Equations”, Commun. Theor. Phys., 51:1 (2009), 6
-
Li Ji-Na, Feng Wei, Qi Xin-Lei, Zhang Shun-Li, “Symmetry Reduction of Initial-Value Problems for a Class of Third-order Evolution Equations”, Commun. Theor. Phys., 52:1 (2009), 55
-
M. V. Neschadim, “Zakony sokhraneniya dlya sistemy tipa reaktsiya-diffuziya”, Sib. zhurn. industr. matem., 11:4 (2008), 125–135
-
Wang Yong, Zhang Shun-Li, “Classification and Approximate Solutions to Perturbed Nonlinear Diffusion-Convection Equations”, Commun. Theor. Phys., 49:1 (2008), 17
-
Daniel J Arrigo, Luis R Suazo, “First-order compatibility for a (2 + 1)-dimensional diffusion equation”, J. Phys. A: Math. Theor., 41:2 (2008), 025001
-
Huabing Jia, Wei Xu, Xiaoshan Zhao, Zhanguo Li, “Separation of variables and exact solutions to nonlinear diffusion equations with x-dependent convection and absorption”, Journal of Mathematical Analysis and Applications, 339:2 (2008), 982
-
A. V. Shmidt, “Analysis of reaction-diffusion systems by the method of linear determining equations”, Comput. Math. Math. Phys., 47:2 (2007), 249–261
-
Lina Ji, Changzheng Qu, “Conditional Lie Bäcklund symmetries and solutions to (n+1)-dimensional nonlinear diffusion equations”, Journal of Mathematical Physics, 48:10 (2007)
-
Daniel J. Arrigo, Luis R. Suazo, Olabode M. Sule, “Symmetry analysis of the two-dimensional diffusion equation with a source term”, Journal of Mathematical Analysis and Applications, 333:1 (2007), 52
-
B.H. Bradshaw-Hajek, M.P. Edwards, P. Broadbridge, G.H. Williams, “Nonclassical symmetry solutions for reaction–diffusion equations with explicit spatial dependence”, Nonlinear Analysis: Theory, Methods & Applications, 67:9 (2007), 2541