1. Lina Ji, Changzheng Qu, “Conditional Lie–Bäcklund Symmetries and Invariant Subspaces to Nonlinear Diffusion Equations with Convection and Source”, Stud Appl Math, 131:3 (2013), 266  crossref
  2. 琼 吴, “The Exact Solutions of a Class of the Nonlinear Diffusion Equations under the Generalized Conditional Symmetry”, PM, 03:05 (2013), 289  crossref
  3. Milena Dimova, Stefka Dimova, Daniela Vasileva, “Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium”, Open Mathematics, 11:8 (2013)  crossref
  4. Stefka Dimova, Milena Dimova, Daniela Vasileva, Springer Proceedings in Mathematics & Statistics, 45, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, 2013, 157  crossref
  5. V A Vladimirov, E V Kutafina, B Zorychta, “On the non-local hydrodynamic-type system and its soliton-like solutions”, J. Phys. A: Math. Theor., 45:8 (2012), 085210  crossref
  6. Lina Ji, “Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations with source”, Physica A: Statistical Mechanics and its Applications, 391:24 (2012), 6320  crossref
  7. Lina Ji, Xiangwei Zhang, Rong Yan, “Conditional Lie–Bäcklund symmetries and sign-invariants to second-order evolution equations”, Communications in Nonlinear Science and Numerical Simulation, 17:9 (2012), 3476  crossref
  8. Jing Kang, Chang-Zheng Qu, “Symmetry groups and Gauss kernels of Schrödinger equations”, Chinese Phys. B, 21:2 (2012), 020301  crossref
  9. S. E. MATSKEVICH, “BURGERS EQUATION AND KOLMOGOROV–PETROVSKY–PISKUNOV EQUATION ON MANIFOLDS”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 14:02 (2011), 199  crossref
  10. M. V. Neshchadim, “Conservation laws for a system of diffusion reaction type with one spatial variable”, J. Appl. Industr. Math., 5:3 (2011), 400–405  mathnet  crossref  mathscinet
  11. Zuo Su-Li, Qu Chang-Zheng, “Solutions and Conditional Lie–Bäcklund Symmetries of Quasi-linear Diffusion-Reaction Equations”, Commun. Theor. Phys., 51:1 (2009), 6  crossref
  12. Li Ji-Na, Feng Wei, Qi Xin-Lei, Zhang Shun-Li, “Symmetry Reduction of Initial-Value Problems for a Class of Third-order Evolution Equations”, Commun. Theor. Phys., 52:1 (2009), 55  crossref
  13. M. V. Neschadim, “Zakony sokhraneniya dlya sistemy tipa reaktsiya-diffuziya”, Sib. zhurn. industr. matem., 11:4 (2008), 125–135  mathnet  mathscinet
  14. Wang Yong, Zhang Shun-Li, “Classification and Approximate Solutions to Perturbed Nonlinear Diffusion-Convection Equations”, Commun. Theor. Phys., 49:1 (2008), 17  crossref
  15. Daniel J Arrigo, Luis R Suazo, “First-order compatibility for a (2 + 1)-dimensional diffusion equation”, J. Phys. A: Math. Theor., 41:2 (2008), 025001  crossref
  16. Huabing Jia, Wei Xu, Xiaoshan Zhao, Zhanguo Li, “Separation of variables and exact solutions to nonlinear diffusion equations with x-dependent convection and absorption”, Journal of Mathematical Analysis and Applications, 339:2 (2008), 982  crossref
  17. A. V. Shmidt, “Analysis of reaction-diffusion systems by the method of linear determining equations”, Comput. Math. Math. Phys., 47:2 (2007), 249–261  mathnet  crossref  mathscinet  zmath  elib  elib
  18. Lina Ji, Changzheng Qu, “Conditional Lie Bäcklund symmetries and solutions to (n+1)-dimensional nonlinear diffusion equations”, Journal of Mathematical Physics, 48:10 (2007)  crossref
  19. Daniel J. Arrigo, Luis R. Suazo, Olabode M. Sule, “Symmetry analysis of the two-dimensional diffusion equation with a source term”, Journal of Mathematical Analysis and Applications, 333:1 (2007), 52  crossref
  20. B.H. Bradshaw-Hajek, M.P. Edwards, P. Broadbridge, G.H. Williams, “Nonclassical symmetry solutions for reaction–diffusion equations with explicit spatial dependence”, Nonlinear Analysis: Theory, Methods & Applications, 67:9 (2007), 2541  crossref
Previous
1
2
3
4
5
Next