-
Alexander N. Gorban, “Singularities of transition processes in dynamical systems: Qualitative theory of critical delays”, ejde, 1:Mon. 01-09 (2004), 05
-
Massimo Falcioni, Angelo Vulpiani, Simone Pigolotti, “Coarse-Grained Probabilistic Automata Mimicking Chaotic Systems”, Phys Rev Letters, 91:4 (2003), 044101
-
Andrzej Ostruszka, Prot Pakoński, Wojciech Słomczyński, Karol Życzkowski, “Dynamical entropy for systems with stochastic perturbation”, Phys Rev E, 62:2 (2000), 2018
-
Stephen G. Eubank, Farmer J. Doyne, Introduction to Nonlinear Physics, 1997, 106
-
Roberto Artuso, Giulio Casati, Italo Guarneri, “Numerical experiments on billiards”, J Statist Phys, 83:1-2 (1996), 145
-
Wanzhen Zeng, Leon Glass, “Statistical properties of heartbeat intervals during atrial fibrillation”, Phys Rev E, 54:2 (1996), 1779
-
Ludwig Arnold, Alex Eizenberg, Volker Wihstutzc, “Large noise asymptotics of invariant measures, with applications to lyapunov exponents”, Stochastics and Stochastic Reports, 59:1-2 (1996), 71
-
Pierre Gaspard, Advances in Chemical Physics, 99, Advances in Chemical Physics, 1996, 369
-
“Quasiperiodicity and chaos in population models”, Proc. R. Soc. Lond. B, 258:1351 (1994), 17
-
V. Baladi, L. -S. Young, “On the spectra of randomly perturbed expanding maps”, Comm Math Phys, 156:2 (1993), 355
-
Pierre Gaspard, Xiao-Jing Wang, “Noise, chaos, and (ε, τ)-entropy per unit time”, Physics Reports, 235:6 (1993), 291
-
Sergey V. Ershov, “Lyapunov exponents as measure averages”, Physics Letters A, 176:1-2 (1993), 89
-
Jens Ledet Jensen, Networks and Chaos — Statistical and Probabilistic Aspects, 1993, 201
-
L.-S. Young, From Topology to Computation: Proceedings of the Smalefest, 1993, 201
-
Ben-Zion Bobrovsky, Ofer Zeitouni, “Some results on the problem of exit from a domain”, Stochastic Processes and their Applications, 41:2 (1992), 241
-
Sergey V. Ershov, “Asymptotic theory of multidimensional chaos”, J Stat Phys, 69:3-4 (1992), 781
-
S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. P. Maslov, “Splitting of the lowest energy levels of the Schrödinger equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$”, Theoret. and Math. Phys., 87:3 (1991), 561–599
-
R.S. MacKay, “An extension of Zeeman's notion of structural stability to non-invertible maps”, Physica D: Nonlinear Phenomena, 52:2-3 (1991), 246
-
Filipe Romeiras, Celso Grebogi, Edward Ott, “Multifractal properties of snapshot attractors of random maps”, Phys Rev A, 41:2 (1990), 784
-
M. L. Blank, “Small perturbations of chaotic dynamical systems”, Russian Math. Surveys, 44:6 (1989), 1–33