-
Friedrich Knop, Hanspeter Kraft, Domingo Luna, Thierry Vust, Algebraische Transformationsgruppen und Invariantentheorie Algebraic Transformation Groups and Invariant Theory, 1989, 63
-
Friedrich Knop, Hanspeter Kraft, Thierry Vust, Algebraische Transformationsgruppen und Invariantentheorie Algebraic Transformation Groups and Invariant Theory, 1989, 77
-
V. L. Popov, “Closed orbits of Borel subgroups”, Math. USSR-Sb., 63:2 (1989), 375–392
-
D. I. Panyushev, “The structure of the canonical module and the Gorenstein property for some quasihomogeneous varieties”, Math. USSR-Sb., 65:1 (1990), 81–95
-
David Wigner, “Un théorème de densité analytique pour les groupes semisimples”, Comment Math Helv, 62:1 (1987), 390
-
Boris Kimelfeld, “Homogeneous domains on flag manifolds”, Journal of Mathematical Analysis and Applications, 121:2 (1987), 506
-
D. N. Akhiezer, “Actions with a finite number of orbits”, Funct. Anal. Appl., 19:1 (1985), 1–4
-
D. I. Panyushev, “A problem on the Steinberg conjecture”, Funct. Anal. Appl., 19:2 (1985), 152–153
-
V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585
-
Victor G. Kac, Dale H. Peterson, Arithmetic and Geometry, 1983, 141
-
William C. Waterhouse, “The module structure of certain Hopf algebra extensions”, Communications in Algebra, 10:2 (1982), 115
-
Hans-Jürgen Schneider, “Zerlegbare Untergruppen affiner Gruppen”, Math Ann, 255:2 (1981), 139
-
È. B. Vinberg, B. N. Kimel'fel'd, “Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups”, Funct. Anal. Appl., 12:3 (1978), 168–174
-
George Kempf, “The Grothendieck-Cousin complex of an induced representation”, Advances in Mathematics, 29:3 (1978), 310
-
V. L. Popov, “Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group”, Math. USSR-Izv., 9:3 (1975), 535–576