1. Ludovic Morin, “Probability that n points are in convex position in a regular κ-gon: Asymptotic results”, Adv. Appl. Probab., 2025, 1  crossref
  2. Leonid V. Bogachev, Sakhavet M. Zarbaliev, “Inverse Limit Shape Problem for Multiplicative Ensembles of Convex Lattice Polygonal Lines”, Mathematics, 11:2 (2023), 385  crossref
  3. Melczer S., Panova G., Pemantle R., “Counting Partitions Inside a Rectangle”, SIAM Discret. Math., 34:4 (2020), 2388–2410  crossref  isi
  4. Imre Bárány, Julien Bureaux, Ben Lund, “Convex cones, integral zonotopes, limit shape”, Advances in Mathematics, 331 (2018), 143  crossref
  5. Julien Bureaux, Nathanaël Enriquez, “Asymptotics of convex lattice polygonal lines with a constrained number of vertices”, Isr. J. Math., 222:2 (2017), 515  crossref
  6. F. L. Chernousko, A. I. Ovseevich, “A problem of random choice and its deterministic structure”, Dokl. Math., 94:2 (2016), 587  crossref
  7. Bureaux J., “Partitions of Large Unbalanced Bipartites”, Math. Proc. Camb. Philos. Soc., 157:3 (2014), 469–487  crossref  isi
  8. Bogachev L.V., “Limit Shape of Random Convex Polygonal Lines: Even More Universality”, J. Comb. Theory Ser. A, 127 (2014), 353–399  crossref  isi
  9. Jean-François Marckert, David Renault, “Compact convex sets of the plane and probability theory”, ESAIM: PS, 18 (2014), 854  crossref
  10. Yakubovich Yu., “Ergodicity of Multiplicative Statistics”, J. Comb. Theory Ser. A, 119:6 (2012), 1250–1279  crossref  isi
  11. Bogachev L.V., Zarbaliev S.M., “Universality of the Limit Shape of Convex Lattice Polygonal Lines”, Ann Probab, 39:6 (2011), 2271–2317  crossref  isi
  12. Bogachev L.V., Zarbaliev S.M., “A proof of the Vershik-Prohorov conjecture on the universality of the limit shape for a class of random polygonal lines”, Dokl. Math., 79:2 (2009), 197–202  mathnet  crossref  mathscinet  zmath  isi
  13. Krapivsky, PL, “Smoothing a rock by chipping”, Physical Review E, 75:3 (2007), 031119  crossref  adsnasa  isi
  14. Maria N. Prodromou, “Limit shape of convex lattice polygons with minimal perimeter”, Discrete Mathematics, 300:1-3 (2005), 139  crossref
  15. A. M. Vershik, Yu. V. Yakubovich, “The limit shape and fluctuations of random partitions of naturals with fixed number of summands”, Mosc. Math. J., 1:3 (2001), 457–468  mathnet  crossref  mathscinet  zmath  elib
  16. A. V. Gladkov, V. V. Dmitrieva, R. A. Sharipov, “Some nonlinear equations reducible to diffusion-type equations”, Theoret. and Math. Phys., 123:1 (2000), 436–445  mathnet  crossref  crossref  mathscinet  zmath  isi
  17. L. V. Bogachev, S. M. Zarbaliev, “Limit theorems for a certain class of random convex polygonal lines”, Russian Math. Surveys, 54:4 (1999), 830–832  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  18. Vershik, A, “Large deviations in the geometry of convex lattice polygons”, Israel Journal of Mathematics, 109 (1999), 13  crossref  mathscinet  zmath  isi
  19. Bogachev L.V., Zarbaliev S.M., “Approximation of convex functions by random polygonal lines”, Dokl. Math., 59:1 (1999), 46–49  mathnet  mathscinet  zmath  isi
  20. Imre Bárány, “Sylvester's Question: The Probability That $n$ Points are in Convex Position”, Ann. Probab., 27:4 (1999)  crossref
1
2
Next