-
Ludovic Morin, “Probability that n points are in convex position in a regular κ-gon: Asymptotic results”, Adv. Appl. Probab., 2025, 1
-
Leonid V. Bogachev, Sakhavet M. Zarbaliev, “Inverse Limit Shape Problem for Multiplicative Ensembles of Convex Lattice Polygonal Lines”, Mathematics, 11:2 (2023), 385
-
Melczer S., Panova G., Pemantle R., “Counting Partitions Inside a Rectangle”, SIAM Discret. Math., 34:4 (2020), 2388–2410
-
Imre Bárány, Julien Bureaux, Ben Lund, “Convex cones, integral zonotopes, limit shape”, Advances in Mathematics, 331 (2018), 143
-
Julien Bureaux, Nathanaël Enriquez, “Asymptotics of convex lattice polygonal lines with a constrained number of vertices”, Isr. J. Math., 222:2 (2017), 515
-
F. L. Chernousko, A. I. Ovseevich, “A problem of random choice and its deterministic structure”, Dokl. Math., 94:2 (2016), 587
-
Bureaux J., “Partitions of Large Unbalanced Bipartites”, Math. Proc. Camb. Philos. Soc., 157:3 (2014), 469–487
-
Bogachev L.V., “Limit Shape of Random Convex Polygonal Lines: Even More Universality”, J. Comb. Theory Ser. A, 127 (2014), 353–399
-
Jean-François Marckert, David Renault, “Compact convex sets of the plane and probability theory”, ESAIM: PS, 18 (2014), 854
-
Yakubovich Yu., “Ergodicity of Multiplicative Statistics”, J. Comb. Theory Ser. A, 119:6 (2012), 1250–1279
-
Bogachev L.V., Zarbaliev S.M., “Universality of the Limit Shape of Convex Lattice Polygonal Lines”, Ann Probab, 39:6 (2011), 2271–2317
-
Bogachev L.V., Zarbaliev S.M., “A proof of the Vershik-Prohorov conjecture on the universality of the limit shape for a class of random polygonal lines”, Dokl. Math., 79:2 (2009), 197–202
-
Krapivsky, PL, “Smoothing a rock by chipping”, Physical Review E, 75:3 (2007), 031119
-
Maria N. Prodromou, “Limit shape of convex lattice polygons with minimal perimeter”, Discrete Mathematics, 300:1-3 (2005), 139
-
A. M. Vershik, Yu. V. Yakubovich, “The limit shape and fluctuations of random partitions of naturals with fixed number of summands”, Mosc. Math. J., 1:3 (2001), 457–468
-
A. V. Gladkov, V. V. Dmitrieva, R. A. Sharipov, “Some nonlinear equations reducible to diffusion-type equations”, Theoret. and Math. Phys., 123:1 (2000), 436–445
-
L. V. Bogachev, S. M. Zarbaliev, “Limit theorems for a certain class of random convex polygonal lines”, Russian Math. Surveys, 54:4 (1999), 830–832
-
Vershik, A, “Large deviations in the geometry of convex lattice polygons”, Israel Journal of Mathematics, 109 (1999), 13
-
Bogachev L.V., Zarbaliev S.M., “Approximation of convex functions by random polygonal lines”, Dokl. Math., 59:1 (1999), 46–49
-
Imre Bárány, “Sylvester's Question: The Probability That $n$ Points are in Convex Position”, Ann. Probab., 27:4 (1999)