-
Ferapontov E.V. Novikov V.S. Stoilov N.M., “Dispersive Deformations of Hamiltonian Systems of Hydrodynamic Type in 2+1 Dimensions”, Physica D, 241:23-24 (2012), 2138–2144
-
Qinxiu Sun, “Generalization of H-pseudoalgebraic structures”, Journal of Mathematical Physics, 53:1 (2012)
-
Qinxiu Sun, “Onn-ary Hom–LieH-pseudoalgebras”, J. Phys. A: Math. Theor., 45:19 (2012), 195208
-
Ferapontov E.V., Odesskii A.V., Stoilov N.M., “Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2+1 dimensions”, J Math Phys, 52:7 (2011), 073505
-
A.P. Reynolds, O.I. Bogoyavlenskij, “Lie algebra structures for four-component Hamiltonian hydrodynamic type systems”, Journal of Geometry and Physics, 61:12 (2011), 2400
-
Qinxiu Sun, Zhixiang Wu, “Theory structure ofn-LieH-pseudoalgebras”, J. Phys. A: Math. Theor., 43:27 (2010), 275201
-
E. V. Ferapontov, A. Moro, V. V. Sokolov, “Hamiltonian Systems of Hydrodynamic Type in 2 + 1 Dimensions”, Commun. Math. Phys., 285:1 (2009), 31
-
O. I. Mokhov, “The Classification of Nonsingular Multidimensional Dubrovin–Novikov Brackets”, Funct. Anal. Appl., 42:1 (2008), 33–44
-
O. I. Mokhov, “The classification of multidimensional Poisson brackets of hydrodynamic type”, Russian Math. Surveys, 61:2 (2006), 356–358
-
A Ya Maltsev, “Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type”, J. Phys. A: Math. Gen., 38:3 (2005), 637
-
O. I. Mokhov, “Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature”, Theoret. and Math. Phys., 136:1 (2003), 908–916
-
Chengming Bai, Daoji Meng, Hongbiao Zhang, “On the central extensions of Poisson brackets of hydrodynamic type”, J. Phys. A: Math. Gen., 36:9 (2003), 2261
-
A.Ya. Maltsev, S.P. Novikov, “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D: Nonlinear Phenomena, 156:1-2 (2001), 53
-
O. I. Mokhov, “On the Cohomology Groups of Complexes of Homogeneous Forms on Loop Spaces of Smooth Manifolds”, Funct. Anal. Appl., 32:3 (1998), 162–171
-
O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622
-
M. V. Pavlov, “Hamiltonian formalism of multidimensional systems of hydrodynamic type having non-degenerate Lagrangian structure”, Russian Math. Surveys, 50:3 (1995), 633–634
-
O.I. Mokhov, “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Physics Letters A, 166:3-4 (1992), 215
-
S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37:2 (1991), 397–419
-
B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124