1. Amenta N., De Loera J.A., Soberon P., “Helly'S Theorem: New Variations and Applications”, Algebraic and Geometric Methods in Discrete Mathematics, Contemporary Mathematics, 685, eds. Harrington H., Omar M., Wright M., Amer Mathematical Soc, 2017, 55–95  crossref  mathscinet  zmath  isi  scopus
  2. David Rolnick, Pablo Soberón, “Quantitative (p,q) theorems in combinatorial geometry”, Discrete Mathematics, 340:10 (2017), 2516  crossref
  3. Jesús A. De Loera, Reuben N. La Haye, David Rolnick, Pablo Soberón, “Quantitative Combinatorial Geometry for Continuous Parameters”, Discrete Comput Geom, 57:2 (2017), 318  crossref
  4. Silouanos Brazitikos, “BRASCAMP–LIEB INEQUALITY AND QUANTITATIVE VERSIONS OF HELLY'S THEOREM”, Mathematika, 63:1 (2017), 272  crossref
  5. Sunil Arya, Guilherme D. da Fonseca, David M. Mount, “On the Combinatorial Complexity of Approximating Polytopes”, Discrete Comput Geom, 58:4 (2017), 849  crossref
  6. William B. Haskell, J. George Shanthikumar, Z. Max Shen, “Aspects of optimization with stochastic dominance”, Ann Oper Res, 253:1 (2017), 247  crossref
  7. G. K. Kamenev, “Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 56:5 (2016), 744–755  mathnet  crossref  crossref  isi  elib
  8. Ionela Prodan, Florin Stoican, Sorin Olaru, Silviu-Iulian Niculescu, SpringerBriefs in Electrical and Computer Engineering, Mixed-Integer Representations in Control Design, 2016, 11  crossref
  9. Angeliki Kritikakou, Francky Catthoor, Vasilios Kelefouras, Costas Goutis, “Array Size Computation under Uniform Overlapping and Irregular Accesses”, ACM Trans. Des. Autom. Electron. Syst., 21:2 (2016), 1  crossref
  10. G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 55:10 (2015), 1619–1632  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  11. Solis-Daun J., “Global Clf Stabilization of Nonlinear Systems. Part II: An Approximation Approach-Closed Cvs”, SIAM J. Control Optim., 53:2 (2015), 645–669  crossref  mathscinet  isi  elib
  12. Gilles Pisier, “ON THE METRIC ENTROPY OF THE BANACH–MAZUR COMPACTUM”, Mathematika, 61:1 (2015), 179  crossref
  13. Florin Stoican, Dan Popescu, Emilian Vlasceanu, Cristian Mateescu, 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), 2015, 765  crossref
  14. G. K. Kamenev, “Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality”, Comput. Math. Math. Phys., 54:8 (2014), 1201–1213  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  15. Hoai-Nam Nguyen, Lecture Notes in Control and Information Sciences, 451, Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems, 2014, 7  crossref
  16. Zonotopes, 2013, 133  crossref
  17. M. V. Nevskii, “O nekotorykh rezultatakh po geometrii vypuklykh tel i ikh prilozheniyakh”, Model. i analiz inform. sistem, 19:3 (2012), 113–123  mathnet
  18. G. K. Kamenev, A. I. Pospelov, “Polyhedral approximation of convex compact bodies by filling methods”, Comput. Math. Math. Phys., 52:5 (2012), 680–690  mathnet  crossref  mathscinet  isi  elib  elib
  19. Guntuboyina A., “Optimal Rates of Convergence for Convex Set Estimation From Support Functions”, Ann. Stat., 40:1 (2012), 385–411  crossref  mathscinet  zmath  isi  elib
  20. Sunil Arya, Guilherme D. da Fonseca, David M. Mount, Proceedings of the twenty-eighth annual symposium on Computational geometry, 2012, 363  crossref
Previous
1
2
3
4
5
Next