1. Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Locally Periodic Coefficients”, Lobachevskii J. Math., 41:5, SI (2020), 818–838  crossref  mathscinet  isi
  2. Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Periodic Coefficients”, Appl. Anal., 2020  crossref  mathscinet  isi
  3. S. E. Pastukhova, “L2- Approximation of Resolvents in Homogenization of Higher Order Elliptic Operators”, J Math Sci, 251:6 (2020), 902  crossref
  4. S. E. Pastukhova, “Homogenization Estimates for Singularly Perturbed Operators”, J Math Sci, 251:5 (2020), 724  crossref
  5. S. E. Pastukhova, “L2-Estimates for Homogenization of Elliptic Operators”, J Math Sci, 244:4 (2020), 671  crossref
  6. Suslina T.A., “Homogenization of Higher-Order Parabolic Systems in a Bounded Domain”, Appl. Anal., 98:1-2, SI (2019), 3–31  crossref  mathscinet  zmath  isi  scopus
  7. Trans. Moscow Math. Soc., 80 (2019), 251–294  mathnet  crossref  elib
  8. Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718  mathnet  crossref  isi  elib
  9. M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  mathnet  crossref  isi  elib
  10. Suslina T.A., “Homogenization of the Stationary Maxwell System With Periodic Coefficients in a Bounded Domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507  crossref  mathscinet  isi  scopus
  11. Durante T., “Homogenization of Elliptic Operators in a Strip Perforated Along a Curve”, AIP Conference Proceedings, 2116, ed. Simos T. Tsitouras C., Amer Inst Physics, 2019, 170006  crossref  mathscinet  isi  scopus
  12. Dorodnyi M.A., Suslina T.A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522  crossref  mathscinet  zmath  isi
  13. Suslina T.A., “Spectral Approach to Homogenization of Elliptic Operators in a Perforated Space”, Rev. Math. Phys., 30:8, SI (2018), 1840016  crossref  mathscinet  isi  scopus
  14. T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain with constant magnetic permeability”, St. Petersburg Math. J., 30:3 (2019), 515–544  mathnet  crossref  mathscinet  isi  elib
  15. N. N. Senik, “On homogenization for non-self-adjoint locally periodic elliptic operators”, Funct. Anal. Appl., 51:2 (2017), 152–156  mathnet  crossref  crossref  isi  elib
  16. Cherednichenko K.D., Kiselev A.V., “Norm-Resolvent Convergence of One-Dimensional High-Contrast Periodic Problems to a Kronig–Penney Dipole-Type Model”, Commun. Math. Phys., 349:2 (2017), 441–480  crossref  mathscinet  zmath  isi  elib  scopus
  17. Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523  crossref  mathscinet  zmath  isi  elib  scopus
  18. T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362  mathnet  crossref  isi  elib
  19. M. Dorodnyi, T. A. Suslina, “Homogenization of a Nonstationary Model Equation of Electrodynamics”, Math. Notes, 102:5 (2017), 645–663  mathnet  crossref  crossref  mathscinet  isi  elib
  20. Yu. M. Meshkova, T. A. Suslina, “Homogenization of the first initial boundary value problem for parabolic systems: Operator error estimates”, St. Petersburg Math. J., 29:6 (2018), 935–978  mathnet  crossref  mathscinet  isi  elib
Previous
1
2
3
4
5
6
Next