-
S. A. Nazarov, “On the concentration of the point spectrum on the
continuous one in problems of the linearized theory of water-waves”, J. Math. Sci. (N. Y.), 152:5 (2008), 674–689
-
S. A. Nazarov, A. S. Slutskij, “Homogenization of an Elliptic System as the Cells of Periodicity are Refined in One Direction”, Math. Notes, 78:6 (2005), 814–826
-
S. A. Nazarov, A. S. Slutskij, “Averaging of an elliptic system under condensing perforation of a domain”, St. Petersburg Math. J., 17:6 (2006), 989–1014
-
Nazarov, SA, “Neumann problem in a perforated layer (sieve)”, Asymptotic Analysis, 44:3–4 (2005), 259
-
S. A. Nazarov, “Elliptic Boundary Value Problems in Hybrid Domains”, Funct. Anal. Appl., 38:4 (2004), 283–297
-
S. A. Nazarov, “Estimates for the accuracy of modelling boundary-value problems at the
junction of domains with different limit dimensions”, Izv. Math., 68:6 (2004), 1179–1215
-
S. A. Nazarov, A. S. Slutskij, “Arbitrary Plane Systems of Anisotropic Beams”, Proc. Steklov Inst. Math., 236 (2002), 222–249
-
Chechkin, GA, “On homogenization of networks and junctions”, Asymptotic Analysis, 30:1 (2002), 61
-
S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106
-
S. A. Nazarov, A. S. Slutskij, “One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification”, Izv. Math., 64:3 (2000), 531–562
-
Motygin, OV, “Justification of the Kirchhoff hypotheses and error estimation for two-dimensional models of anisotropic and inhomogeneous plates, including laminated plates”, IMA Journal of Applied Mathematics, 65:1 (2000), 1
-
O. V. Motygin, S. A. Nazarov, “A computer-aided procedure for constructing boundary layers in plate theory”, Comput. Math. Math. Phys., 40:2 (2000), 261–272
-
S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014
-
S. A. Nazarov, A. S. Slutskij, “Asymptotic behaviour of solutions of boundary-value problems for equations with rapidly oscillating coefficients in a domain with a small cavity”, Sb. Math., 189:9 (1998), 1385–1422
-
Nazarov, SA, “Korn's inequalities for junctions of spatial bodies and thin rods”, Mathematical Methods in the Applied Sciences, 20:3 (1997), 219