-
S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5, SI (2020), 818–838
-
Pastukhova S.E., “On Resolvent Approximations of Elliptic Differential Operators With Periodic Coefficients”, Appl. Anal., 2020
-
S. E. Pastukhova, “L2- Approximation of Resolvents in Homogenization of Higher Order Elliptic Operators”, J Math Sci, 251:6 (2020), 902
-
T. A. Suslina, “Homogenization of higher-order parabolic systems in a bounded domain”, Appl. Anal., 98:1–2, SI (2019), 3–31
-
W. Niu, Ya. Xu, “Uniform boundary estimates in homogenization of higher-order elliptic systems”, Ann. Mat. Pura Appl., 198:1 (2019), 97–128
-
Julia Orlik, Heiko Andrä, Sarah Staub, Integral Methods in Science and Engineering, 2019, 283
-
W. Niu, Zh. Shen, Ya. Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, J. Funct. Anal., 274:8 (2018), 2356–2398
-
T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215
-
E. Pruchnicki, “Homogenization of a second order plate model”, Math. Mech. Solids, 23:9 (2018), 1323–1332
-
W. Niu, Ya. Xu, “Convergence rates in homogenization of higher-order parabolic systems”, Discret. Contin. Dyn. Syst., 38:8 (2018), 4203–4229
-
M. Waurick, “Nonlocal $h$-convergence”, Calc. Var. Partial Differ. Equ., 57:6 (2018), 159
-
D. I. Borisov, A. I. Mukhametrakhimova, “The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes”, J Math Sci, 232:3 (2018), 283
-
T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362
-
Pastukhova S.E., “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7, SI (2016), 1449–1466