Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 1, Page 104
DOI: https://doi.org/10.7868/S0044466914010165
(Mi zvmmf9976)
 

This article is cited in 11 scientific papers (total in 11 papers)

Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation

Tao Xua, Fu-Wei Sunb, Yi Zhanga, Juan Licd

a College of Science, China University of Petroleum, Beijing 102249, China
b College of Science, North China University of Technology Beijing 100041, China
c Demonstration Centre, Spaceborne Remote Sensing National Space Administration, Beijing 100101, China
d State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese of Sciences Academy and Beijing Normal University, Beijing 100101, China
Full-text PDF (97 kB) Citations (11)
References:
Abstract: It is known that the Kadomtsev–Petviashvili (KP) equation can be decomposed into the first two members of the coupled Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy by the binary non-linearization of Lax pairs. In this paper, we construct the $N$-th iterated Darboux transformation (DT) for the second- and third-order $m$-coupled AKNS systems. By using together the $N$-th iterated DT and Cramer’s rule, we find that the KPII equation has the unreduced multi-component Wronskian solution and the KPI equation admits a reduced multi-component Wronskian solution. In particular, based on the unreduced and reduced two-component Wronskians, we obtain two families of fully-resonant line-soliton solutions which contain arbitrary numbers of asymptotic solitons as $y\to\mp\infty$ to the KPII equation, and the ordinary $N$-soliton solution to the KPI equation. In addition, we find that the KPI line solitons propagating in parallel can exhibit the bound state at the moment of collision.
Key words: Kadomtsev–Petviashvili equation, multi-component Wronskian, soliton solutions, Darboux transformation.
Received: 14.01.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 1, Pages 97–113
DOI: https://doi.org/10.1134/S0965542514010151
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: English
Citation: Tao Xu, Fu-Wei Sun, Yi Zhang, Juan Li, “Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation”, Zh. Vychisl. Mat. Mat. Fiz., 54:1 (2014), 104; Comput. Math. Math. Phys., 54:1 (2014), 97–113
Citation in format AMSBIB
\Bibitem{XuSunZha14}
\by Tao~Xu, Fu-Wei~Sun, Yi~Zhang, Juan~Li
\paper Multi-component Wronskian solution to the Kadomtsev--Petviashvili equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 1
\pages 104
\mathnet{http://mi.mathnet.ru/zvmmf9976}
\crossref{https://doi.org/10.7868/S0044466914010165}
\elib{https://elibrary.ru/item.asp?id=20991866}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 1
\pages 97--113
\crossref{https://doi.org/10.1134/S0965542514010151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332109500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894620220}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9976
  • https://www.mathnet.ru/eng/zvmmf/v54/i1/p104
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :80
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024