Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 1, Pages 65–79
DOI: https://doi.org/10.7868/S004446691401013X
(Mi zvmmf9973)
 

This article is cited in 5 scientific papers (total in 5 papers)

Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations

O. A. Sultanov

Institute of Mathematics and Computing Center, Ufa Scientific Center, Russian Academy of Sciences, ul. Chernyshevskogo 112, Ufa, 450008, Bashkortostan, Russia
Full-text PDF (318 kB) Citations (5)
References:
Abstract: Systems of differential equations arising in the theory of nonlinear oscillations in resonance-related problems are considered. Of special interest are solutions whose amplitude increases without bound with time. Specifically, such solutions correspond to autoresonance. The stability of autoresonance solutions with respect to random perturbations is analyzed. The classes of admissible perturbations are described. The results rely on information on Lyapunov functions for the unperturbed equations.
Key words: systems of nonlinear oscillation equations, autoresonance, random perturbations, stability of solutions, Lyapunov function method.
Received: 19.04.2013
Revised: 25.07.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 1, Pages 59–73
DOI: https://doi.org/10.1134/S0965542514010126
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: O. A. Sultanov, “Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations”, Zh. Vychisl. Mat. Mat. Fiz., 54:1 (2014), 65–79; Comput. Math. Math. Phys., 54:1 (2014), 59–73
Citation in format AMSBIB
\Bibitem{Sul14}
\by O.~A.~Sultanov
\paper Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 1
\pages 65--79
\mathnet{http://mi.mathnet.ru/zvmmf9973}
\crossref{https://doi.org/10.7868/S004446691401013X}
\elib{https://elibrary.ru/item.asp?id=20991863}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 1
\pages 59--73
\crossref{https://doi.org/10.1134/S0965542514010126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332109500005}
\elib{https://elibrary.ru/item.asp?id=21866547}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894607070}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9973
  • https://www.mathnet.ru/eng/zvmmf/v54/i1/p65
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024