Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 12, Pages 2072–2081
DOI: https://doi.org/10.7868/S0044466913120120
(Mi zvmmf9964)
 

This article is cited in 10 scientific papers (total in 10 papers)

Influence of dislocations on kink solutions of the double sine-Gordon equation

S. P. Popov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
References:
Abstract: Dependences related to the formation of kinks and their interaction with local perturbations defined as a smooth function of coordinates multiplying the sine of complete argument in the double sine-Gordon equation are studied. It is shown that there are nonstationary kink solutions remaining within the perturbation domain. These solutions consist of two separate $2\pi$-kinks oscillating about the center of the perturbation. The interactions of these kinks with $4\pi$-kinks have a complicated character depending not only on the velocity but also on the phases of the kink pairs. The transmission, capture, and reflection of kinks are investigated. The computations were based on the quasispectral Fourier method and the fourth-order Runge–Kutta method.
Key words: sine-Gordon equation, double sine-Gordon equation, kink, kink-antikink interaction, wobbler, quasi-spectral method, Runge–Kutta method.
Received: 17.03.2013
Revised: 11.06.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 12, Pages 1891–1899
DOI: https://doi.org/10.1134/S0965542513120099
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: S. P. Popov, “Influence of dislocations on kink solutions of the double sine-Gordon equation”, Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013), 2072–2081; Comput. Math. Math. Phys., 53:12 (2013), 1891–1899
Citation in format AMSBIB
\Bibitem{Pop13}
\by S.~P.~Popov
\paper Influence of dislocations on kink solutions of the double sine-Gordon equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 12
\pages 2072--2081
\mathnet{http://mi.mathnet.ru/zvmmf9964}
\crossref{https://doi.org/10.7868/S0044466913120120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146575}
\elib{https://elibrary.ru/item.asp?id=20740323}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 12
\pages 1891--1899
\crossref{https://doi.org/10.1134/S0965542513120099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329101600011}
\elib{https://elibrary.ru/item.asp?id=21914177}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897803339}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9964
  • https://www.mathnet.ru/eng/zvmmf/v53/i12/p2072
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :108
    References:55
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024