Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 11, Pages 1835–1855
DOI: https://doi.org/10.7868/S004446691311001X
(Mi zvmmf9946)
 

This article is cited in 13 scientific papers (total in 13 papers)

Asymptotic and numerical study of resonant tunneling in two-dimensional quantum waveguides of variable cross section

L. M. Baskina, M.  Kabardova, P. Neittaanmäkib, B. A. Plamenevskiic, O. V. Sarafanovc

a St. Petersburg State University of Telecommunications, nab. Moiki 61, St.-Petersburg, 191186, Russia
b University of Jyväskylä, P.O. Box 35(Agora), FI-40014, Jyväskylä, Finland
c St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
References:
Abstract: A waveguide is considered that coincides with a strip having two narrows of width $\varepsilon$. The electron wave function satisfies the Helmholtz equation with Dirichlet boundary conditions. The part of the waveguide between the narrows plays the role of a resonator, and there arise conditions for electron resonant tunneling. This phenomenon means that, for an electron of energy $E$, the probability $T(E)$ of passing from one part of the waveguide to the other through the resonator has a sharp peak at $E=E_{\mathrm{res}}$, where $E_{\mathrm{res}}$ is a “resonant” energy. To analyze the operation of electronic devices based on resonant tunneling, it is important to know $E_{\mathrm{res}}$ and the behavior of $T(E)$ for $E$ close to $E_{\mathrm{res}}$. Asymptotic formulas for the resonance energy and the transition and reflection coefficients as $\varepsilon\to0$ are derived. These formulas depend on the limit shape of the narrows. The limit waveguide near each narrow is assumed to coincide with a pair of vertical angles. The asymptotic results are compared with numerical ones obtained by approximately computing the waveguide scattering matrix. Based on this comparison, the range of $\varepsilon$ is found in which the asymptotic approach agrees with the numerical results. The methods proposed are applicable to much more complicated models than that under consideration. Specifically, the same approach is suitable for an asymptotic and numerical analysis of tunneling in three-dimensional quantum waveguides of variable cross section.
Key words: two-dimensional quantum waveguides, Dirichlet problem for Helmholtz’s equation, asymptotic and numerical studies.
Received: 09.10.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 11, Pages 1664–1683
DOI: https://doi.org/10.1134/S0965542513110018
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: L. M. Baskin, M.  Kabardov, P. Neittaanmäki, B. A. Plamenevskii, O. V. Sarafanov, “Asymptotic and numerical study of resonant tunneling in two-dimensional quantum waveguides of variable cross section”, Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013), 1835–1855; Comput. Math. Math. Phys., 53:11 (2013), 1664–1683
Citation in format AMSBIB
\Bibitem{BasKabNei13}
\by L.~M.~Baskin, M.~~Kabardov, P.~Neittaanm\"aki, B.~A.~Plamenevskii, O.~V.~Sarafanov
\paper Asymptotic and numerical study of resonant tunneling in two-dimensional quantum waveguides of variable cross section
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 11
\pages 1835--1855
\mathnet{http://mi.mathnet.ru/zvmmf9946}
\crossref{https://doi.org/10.7868/S004446691311001X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3150809}
\elib{https://elibrary.ru/item.asp?id=20447117}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 11
\pages 1664--1683
\crossref{https://doi.org/10.1134/S0965542513110018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327076500007}
\elib{https://elibrary.ru/item.asp?id=21889489}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887599724}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9946
  • https://www.mathnet.ru/eng/zvmmf/v53/i11/p1835
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :73
    References:55
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024