Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 11, Pages 1823–1834
DOI: https://doi.org/10.7868/S0044466913110100
(Mi zvmmf9945)
 

This article is cited in 4 scientific papers (total in 4 papers)

Formalism of two potentials for the numerical solution of Maxwell's equations

A. N. Kudryavtseva, S. I. Trashkeevb

a Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Institutskaya ul. 4/1, Novosibirsk, 630090, Russia
b Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, pr. Lavrent'eva 13/3, Novosibirsk, 630090, Russia
Full-text PDF (418 kB) Citations (4)
References:
Abstract: A new formulation of Maxwell's equations based on the introduction of two vector and two scalar potentials is proposed. As a result, the electromagnetic field equations are written as a hyperbolic system that contains, in contrast to the original Maxwell system, only evolution equations and does not involve equations in the form of differential constraints. This makes the new equations especially convenient for the numerical simulation of electromagnetic processes. Specifically, they can be solved by applying powerful modern shock-capturing methods based on the approximation of spatial derivatives by upwind differences. The cases of an electromagnetic field in a vacuum and an inhomogeneous material are considered. Examples are given in which electromagnetic wave propagation is simulated by solving the formulated system of equations with the help of modern high-order accurate schemes.
Key words: computational electrodynamics, formalism of two potentials, numerical solution of hyperbolic systems of equations, shock-capturing schemes.
Received: 10.07.2012
Revised: 06.05.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 11, Pages 1653–1663
DOI: https://doi.org/10.1134/S0965542513110079
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. N. Kudryavtsev, S. I. Trashkeev, “Formalism of two potentials for the numerical solution of Maxwell's equations”, Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013), 1823–1834; Comput. Math. Math. Phys., 53:11 (2013), 1653–1663
Citation in format AMSBIB
\Bibitem{KudTra13}
\by A.~N.~Kudryavtsev, S.~I.~Trashkeev
\paper Formalism of two potentials for the numerical solution of Maxwell's equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 11
\pages 1823--1834
\mathnet{http://mi.mathnet.ru/zvmmf9945}
\crossref{https://doi.org/10.7868/S0044466913110100}
\elib{https://elibrary.ru/item.asp?id=20447114}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 11
\pages 1653--1663
\crossref{https://doi.org/10.1134/S0965542513110079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327076500006}
\elib{https://elibrary.ru/item.asp?id=21889421}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887581397}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9945
  • https://www.mathnet.ru/eng/zvmmf/v53/i11/p1823
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :148
    References:50
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024