Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 11, Pages 1804–1821
DOI: https://doi.org/10.7868/S0044466913110136
(Mi zvmmf9943)
 

This article is cited in 22 scientific papers (total in 22 papers)

Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay

A. V. Razgulin, T. E. Romanenko

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991, Russia
References:
Abstract: The parabolic functional differential equation
$$ \frac{\partial u}{\partial t}=D\frac{\partial^2u}{\partial x^2}u+K\left(1+\gamma\cos u(x+\theta,t-T)\right) $$
is considered on the circle $[0,2\pi]$. Here, $D>0$, $T>0$, $K>0$, and $\gamma\in(0,1)$. Such equations arise in the modeling of nonlinear optical systems with a time delay $T>0$ and a spatial argument rotated by an angle $\theta\in[0,2\pi)$ in the nonlocal feedback loop in the approximation of a thin circular layer. The goal of this study is to describe spatially inhomogeneous rotating-wave solutions bifurcating from a homogeneous stationary solution in the case of a Andronov–Hopf bifurcation. The existence of such waves is proved by passing to a moving coordinate system, which makes it possible to reduce the problem to the construction of a nontrivial solution to a periodic boundary value problem for a stationary delay differential equation. The existence of rotating waves in an annulus resulting from a Andronov–Hopf bifurcation is proved, and the leading coefficients in the expansion of the solution in powers of a small parameter are obtained. The conditions for the stability of waves are derived by constructing a normal form for the Andronov–Hopf bifurcation for the functional differential equation under study.
Key words: parabolic equation, delay, rotation of arguments, Andronov–Hopf bifurcation, rotating waves, normal form, stability, bifurcations, existence of a solution.
Received: 27.05.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 11, Pages 1626–1643
DOI: https://doi.org/10.1134/S0965542513110109
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. V. Razgulin, T. E. Romanenko, “Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay”, Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013), 1804–1821; Comput. Math. Math. Phys., 53:11 (2013), 1626–1643
Citation in format AMSBIB
\Bibitem{RazRom13}
\by A.~V.~Razgulin, T.~E.~Romanenko
\paper Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 11
\pages 1804--1821
\mathnet{http://mi.mathnet.ru/zvmmf9943}
\crossref{https://doi.org/10.7868/S0044466913110136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3150806}
\elib{https://elibrary.ru/item.asp?id=20447109}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 11
\pages 1626--1643
\crossref{https://doi.org/10.1134/S0965542513110109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327076500004}
\elib{https://elibrary.ru/item.asp?id=21889481}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887597817}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9943
  • https://www.mathnet.ru/eng/zvmmf/v53/i11/p1804
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :105
    References:55
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024