Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 10, Pages 1684–1697
DOI: https://doi.org/10.7868/S0044466913090044
(Mi zvmmf9932)
 

This article is cited in 3 scientific papers (total in 3 papers)

Bicompact Rogov schemes for the multidimensional inhomogeneous linear transport equation at large optical depths

E. N. Aristovaab, S. V. Martynenkoa

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia
Full-text PDF (368 kB) Citations (3)
References:
Abstract: Bicompact Rogov schemes intended for the numerical solution of the inhomogeneous transport equation are extended to the multidimensional case. A factorized modification of the method without using splitting in directions or introducing additional half-integer spatial points is proposed. As its original counterpart, the scheme is fourth-order accurate in space and third-order accurate in time. In the case of one dimension, a higher order accurate scheme on a minimal stencil is constructed using the node values of the unknown function and, in addition, its integral averages over a spatial cell. In the case of two dimensions, the set of unknowns in a given cell is expanded to four. The resulting system of equations is solved for the expanded set of variables by the running calculation method, which reflects the characteristic properties of the transport equation without explicit use of characteristics. In the case of large optical depths and a piecewise differentiable solution, a monotonization procedure is proposed based on the Rosenbrock scheme with complex coefficients.
Key words: transport equation, bicompact schemes, Runge–Kutta methods, Rosenbrock scheme with complex coefficients.
Received: 22.03.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 10, Pages 1499–1511
DOI: https://doi.org/10.1134/S0965542513090042
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: E. N. Aristova, S. V. Martynenko, “Bicompact Rogov schemes for the multidimensional inhomogeneous linear transport equation at large optical depths”, Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1684–1697; Comput. Math. Math. Phys., 53:10 (2013), 1499–1511
Citation in format AMSBIB
\Bibitem{AriMar13}
\by E.~N.~Aristova, S.~V.~Martynenko
\paper Bicompact Rogov schemes for the multidimensional inhomogeneous linear transport equation at large optical depths
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 10
\pages 1684--1697
\mathnet{http://mi.mathnet.ru/zvmmf9932}
\crossref{https://doi.org/10.7868/S0044466913090044}
\elib{https://elibrary.ru/item.asp?id=20280325}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 10
\pages 1499--1511
\crossref{https://doi.org/10.1134/S0965542513090042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325962300009}
\elib{https://elibrary.ru/item.asp?id=21883313}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885988629}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9932
  • https://www.mathnet.ru/eng/zvmmf/v53/i10/p1684
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :108
    References:58
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024