Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 10, Pages 1610–1621
DOI: https://doi.org/10.7868/S0044466913100116
(Mi zvmmf9925)
 

This article is cited in 16 scientific papers (total in 16 papers)

Monotone and convex interpolation by weighted cubic splines

B. I. Kvasov

Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 6, Novosibirsk, 630090, Russia
References:
Abstract: Algorithms for interpolating by weighted cubic splines are constructed with the aim of preserving the monotonicity and convexity of the original discrete data. The analysis performed in this paper makes it possible to develop two algorithms with the automatic choice of the shape-controlling parameters (weights). One of them preserves the monotonicity of the data, while the other preserves the convexity. Certain numerical results are presented.
Key words: monotone and convex interpolation, weighted cubic splines, adaptive choice of the shape-controlling parameters.
Received: 25.03.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 10, Pages 1428–1439
DOI: https://doi.org/10.1134/S0965542513100102
Bibliographic databases:
Document Type: Article
UDC: 519.652.3
Language: Russian
Citation: B. I. Kvasov, “Monotone and convex interpolation by weighted cubic splines”, Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1610–1621; Comput. Math. Math. Phys., 53:10 (2013), 1428–1439
Citation in format AMSBIB
\Bibitem{Kva13}
\by B.~I.~Kvasov
\paper Monotone and convex interpolation by weighted cubic splines
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 10
\pages 1610--1621
\mathnet{http://mi.mathnet.ru/zvmmf9925}
\crossref{https://doi.org/10.7868/S0044466913100116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3254884}
\elib{https://elibrary.ru/item.asp?id=20280318}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 10
\pages 1428--1439
\crossref{https://doi.org/10.1134/S0965542513100102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325962300002}
\elib{https://elibrary.ru/item.asp?id=21883269}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885969484}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9925
  • https://www.mathnet.ru/eng/zvmmf/v53/i10/p1610
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:664
    Full-text PDF :367
    References:83
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024