Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 9, Page 1480
DOI: https://doi.org/10.7868/S0044466913090056
(Mi zvmmf9915)
 

This article is cited in 15 scientific papers (total in 15 papers)

Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type

E. H. Dohaa, A. H. Bhrawybc, D. Baleanudce, R. H. Hafezf

a Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
b Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
c King Abdulaziz University, Jeddah
d epartment of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara, Turkey
e Institute of Space Sciences, Magurele-Bucharest, Romania
f Department of Basic Science, Institute of Information Technology, Modern Academy, Cairo, Egypt
References:
Abstract: In this paper, we propose the shifted Jacobi–Gauss collocation spectral method for solving initial value problems of Bratu type, which is widely applicable in fuel ignition of the combustion theory and heat transfer. The spatial approximation is based on shifted Jacobi polynomials $J_n^{(\alpha,\beta)}(x)$ with $\alpha, \beta \in(-1,\infty)$, $x\in[0,1]$ and $n$ the polynomial degree. The shifted Jacobi–Gauss points are used as collocation nodes. Illustrative examples have been discussed to demonstrate the validity and applicability of the proposed technique. Comparing the numerical results of the proposed method with some well-known results show that the method is efficient and gives excellent numerical results.
Key words: Bratu-type equations, second-order initial value problems, collocation method, Jacobi–Gauss quadrature, shifted Jacobi polynomials.
Received: 11.02.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 9, Pages 1292–1302
DOI: https://doi.org/10.1134/S0965542513090121
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: English
Citation: E. H. Doha, A. H. Bhrawy, D. Baleanu, R. H. Hafez, “Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu-type”, Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013), 1480; Comput. Math. Math. Phys., 53:9 (2013), 1292–1302
Citation in format AMSBIB
\Bibitem{DohBhrBal13}
\by E.~H.~Doha, A.~H.~Bhrawy, D.~Baleanu, R.~H.~Hafez
\paper Efficient Jacobi--Gauss collocation method for solving initial value problems of Bratu-type
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 9
\pages 1480
\mathnet{http://mi.mathnet.ru/zvmmf9915}
\crossref{https://doi.org/10.7868/S0044466913090056}
\elib{https://elibrary.ru/item.asp?id=20193347}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 9
\pages 1292--1302
\crossref{https://doi.org/10.1134/S0965542513090121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325962000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884186472}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9915
  • https://www.mathnet.ru/eng/zvmmf/v53/i9/p1480
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :88
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024