Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 8, Pages 1249–1271
DOI: https://doi.org/10.7868/S0044466913080085
(Mi zvmmf9898)
 

This article is cited in 5 scientific papers (total in 5 papers)

Sequential stable Kuhn–Tucker theorem in nonlinear programming

A. V. Kanatov, M. I. Sumin

N. I. Lobachevski State University of Nizhni Novgorod
Full-text PDF (355 kB) Citations (5)
References:
Abstract: A general parametric nonlinear mathematical programming problem with an operator equality constraint and a finite number of functional inequality constraints is considered in a Hilbert space. Elements of a minimizing sequence for this problem are formally constructed from elements of minimizing sequences for its augmented Lagrangian with values of dual variables chosen by applying the Tikhonov stabilization method in the course of solving the corresponding modified dual problem. A sequential Kuhn–Tucker theorem in nondifferential form is proved in terms of minimizing sequences and augmented Lagrangians. The theorem is stable with respect to errors in the initial data and provides a necessary and sufficient condition on the elements of a minimizing sequence. It is shown that the structure of the augmented Lagrangian is a direct consequence of the generalized differentiability properties of the value function in the problem. The proof is based on a “nonlinear” version of the dual regularization method, which is substantiated in this paper. An example is given illustrating that the formal construction of a minimizing sequence is unstable without regularizing the solution of the modified dual problem.
Key words: nonlinear programming, parametric problem, sequential optimization, minimizing sequence, Lagrange principle, Kuhn–Tucker theorem in nondifferential form, proximal subgradient, augmented Lagrangian, duality, regularization, perturbation method.
Received: 13.03.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 8, Pages 1078–1098
DOI: https://doi.org/10.1134/S0965542513080083
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. V. Kanatov, M. I. Sumin, “Sequential stable Kuhn–Tucker theorem in nonlinear programming”, Zh. Vychisl. Mat. Mat. Fiz., 53:8 (2013), 1249–1271; Comput. Math. Math. Phys., 53:8 (2013), 1078–1098
Citation in format AMSBIB
\Bibitem{KanSum13}
\by A.~V.~Kanatov, M.~I.~Sumin
\paper Sequential stable Kuhn--Tucker theorem in nonlinear programming
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 8
\pages 1249--1271
\mathnet{http://mi.mathnet.ru/zvmmf9898}
\crossref{https://doi.org/10.7868/S0044466913080085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3255253}
\elib{https://elibrary.ru/item.asp?id=19569090}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 8
\pages 1078--1098
\crossref{https://doi.org/10.1134/S0965542513080083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323626600004}
\elib{https://elibrary.ru/item.asp?id=20453806}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883121918}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9898
  • https://www.mathnet.ru/eng/zvmmf/v53/i8/p1249
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:668
    Full-text PDF :89
    References:63
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024