Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 3, Pages 442–458
DOI: https://doi.org/10.7868/S0044466913030113
(Mi zvmmf9890)
 

This article is cited in 3 scientific papers (total in 3 papers)

Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method

N. Ya. Moiseev

Russian Federal Nuclear Center E. I. Zababakhin All-Russian Scientific Research Institute of Technical Physics
Full-text PDF (640 kB) Citations (3)
References:
Abstract: High-order accurate explicit and implicit conservative predictor-corrector schemes are presented for the radiative transfer and energy equations in the multigroup kinetic approximation solved together by applying the splitting method with respect to physical processes and spatial variables. The original system of integrodifferential equations is split into two subsystems: one of partial differential equations without sources and one of ordinary differential equations (ODE) with sources. The general solution of the ODE system and the energy equation is written in quadratures based on total energy conservation in a cell. A feature of the schemes is that a new approximation is used for the numerical fluxes through the cell interfaces. The fluxes are found along characteristics with the interaction between radiation and matter taken into account. For smooth solutions, the schemes approximating the transfer equations on spatially uniform grids are second-order accurate in time and space. As an example, numerical results for Fleck’s test problems are presented that confirm the increased accuracy and efficiency of the method.
Key words: radiative transfer equations, difference splitting schemes.
Received: 22.08.2012
Revised: 25.09.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 3, Pages 320–335
DOI: https://doi.org/10.1134/S0965542513030093
Bibliographic databases:
Document Type: Article
UDC: 519.634
MSC: 76M20,65N06
Language: Russian
Citation: N. Ya. Moiseev, “Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method”, Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013), 442–458; Comput. Math. Math. Phys., 53:3 (2013), 320–335
Citation in format AMSBIB
\Bibitem{Moi13}
\by N.~Ya.~Moiseev
\paper Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 3
\pages 442--458
\mathnet{http://mi.mathnet.ru/zvmmf9890}
\crossref{https://doi.org/10.7868/S0044466913030113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3249657}
\zmath{https://zbmath.org/?q=an:06188990}
\elib{https://elibrary.ru/item.asp?id=18822260}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 3
\pages 320--335
\crossref{https://doi.org/10.1134/S0965542513030093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317303000008}
\elib{https://elibrary.ru/item.asp?id=20430894}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84875982747}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9890
  • https://www.mathnet.ru/eng/zvmmf/v53/i3/p442
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:654
    Full-text PDF :342
    References:75
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024