Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 5, Pages 816–824
DOI: https://doi.org/10.7868/S0044466913050165
(Mi zvmmf9862)
 

Cones of multipowers and combinatorial optimization problems

M. N. Vyalyi

Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
References:
Abstract: The cone of multipowers is dual to the cone of nonnegative polynomials. The relation of the former cone to combinatorial optimization problems is examined. Tensor extensions of polyhedra of combinatorial optimization problems are used for this purpose. The polyhedron of the MAX-2-CSP problem (optimization version of the two-variable constraint satisfaction problem) of tensor degree $4k$ is shown to be the intersection of the cone of $4k$-multipowers and a suitable affine space. Thus, in contrast to SDP relaxations, the relaxation to a cone of multipowers becomes tight even for an extension of degree 4.
Key words: combinatorial optimization problems, cones of multipowers, tensor extensions of polyhedra.
Received: 29.11.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 5, Pages 647–654
DOI: https://doi.org/10.1134/S096554251305014X
Bibliographic databases:
Document Type: Article
UDC: 519.67
Language: Russian
Citation: M. N. Vyalyi, “Cones of multipowers and combinatorial optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013), 816–824; Comput. Math. Math. Phys., 53:5 (2013), 647–654
Citation in format AMSBIB
\Bibitem{Vya13}
\by M.~N.~Vyalyi
\paper Cones of multipowers and combinatorial optimization problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 5
\pages 816--824
\mathnet{http://mi.mathnet.ru/zvmmf9862}
\crossref{https://doi.org/10.7868/S0044466913050165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3253198}
\elib{https://elibrary.ru/item.asp?id=19002275}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 5
\pages 647--654
\crossref{https://doi.org/10.1134/S096554251305014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319418500013}
\elib{https://elibrary.ru/item.asp?id=20435454}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878283978}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9862
  • https://www.mathnet.ru/eng/zvmmf/v53/i5/p816
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025