Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 5, Pages 702–726
DOI: https://doi.org/10.7868/S0044466913050025
(Mi zvmmf9852)
 

This article is cited in 3 scientific papers (total in 3 papers)

A method for the numerical solution of the Painlevé equations

A. A. Abramova, L. F. Yukhnob

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b Institute for Mathematical Modelling, Russian Academy of Sciences, Moscow
Full-text PDF (363 kB) Citations (3)
References:
Abstract: A numerical method for solving the Cauchy problem for all the six Painlevé equations is proposed. The difficulty of solving these equations is that the unknown functions can have movable (that is, dependent on the initial data) singular points of the pole type. Moreover, the Painlevé III–VI equations may have singularities at points where the solution takes certain finite values. The positions of all these singularities are not a priori known and are determined in the process of solving the equation. The proposed method is based on the transition to auxiliary systems of differential equations in neighborhoods of the indicated points. The equations in these systems and their solutions have no singularities at the corresponding point and its neighborhood. Such auxiliary equations are derived for all Painlevé equations and for all types of singularities. Efficient criteria for transition to auxiliary systems are formulated, and numerical results illustrating the potentials of the method are presented.
Key words: Painlevé I–VI ordinary differential equation, pole of a solution, singularity of an equation, numerical method, method of the successive elimination of singularities.
Received: 26.11.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 5, Pages 540–563
DOI: https://doi.org/10.1134/S0965542513050023
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: A. A. Abramov, L. F. Yukhno, “A method for the numerical solution of the Painlevé equations”, Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013), 702–726; Comput. Math. Math. Phys., 53:5 (2013), 540–563
Citation in format AMSBIB
\Bibitem{AbrYuk13}
\by A.~A.~Abramov, L.~F.~Yukhno
\paper A method for the numerical solution of the Painlev\'e equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 5
\pages 702--726
\mathnet{http://mi.mathnet.ru/zvmmf9852}
\crossref{https://doi.org/10.7868/S0044466913050025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3253188}
\elib{https://elibrary.ru/item.asp?id=19002264}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 5
\pages 540--563
\crossref{https://doi.org/10.1134/S0965542513050023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319418500003}
\elib{https://elibrary.ru/item.asp?id=20435551}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878304248}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9852
  • https://www.mathnet.ru/eng/zvmmf/v53/i5/p702
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :77
    References:77
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024