Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 5, Pages 691–700
DOI: https://doi.org/10.7868/S0044466913050153
(Mi zvmmf9850)
 

This article is cited in 1 scientific paper (total in 1 paper)

An extension of the Krylov method for calculating the coefficients of the minimal polynomial

K. O. Vidyaeva, S. M. Ermakov

Saint-Petersburg State University
Full-text PDF (230 kB) Citations (1)
References:
Abstract: The concept of a $k$-minimal polynomial of an operator is introduced, and a method for approximate calculation of the coefficients of this polynomial is proposed. The method uses the calculated values of certain functionals on iterations of the operator. Special features emerging when the algorithm is used in combination with the Monte-Carlo method are discussed, and numerical results are given.
Key words: algorithm for calculating the coefficients of a polynomial, generalized Krylov method, Monte-Carlo method, spectrum of a linear operator.
Received: 15.06.2012
Revised: 28.11.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 5, Pages 521–529
DOI: https://doi.org/10.1134/S0965542513050138
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: K. O. Vidyaeva, S. M. Ermakov, “An extension of the Krylov method for calculating the coefficients of the minimal polynomial”, Zh. Vychisl. Mat. Mat. Fiz., 53:5 (2013), 691–700; Comput. Math. Math. Phys., 53:5 (2013), 521–529
Citation in format AMSBIB
\Bibitem{VidErm13}
\by K.~O.~Vidyaeva, S.~M.~Ermakov
\paper An extension of the Krylov method for calculating the coefficients of the minimal polynomial
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 5
\pages 691--700
\mathnet{http://mi.mathnet.ru/zvmmf9850}
\crossref{https://doi.org/10.7868/S0044466913050153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3253186}
\elib{https://elibrary.ru/item.asp?id=19002262}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 5
\pages 521--529
\crossref{https://doi.org/10.1134/S0965542513050138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319418500001}
\elib{https://elibrary.ru/item.asp?id=20436103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878343321}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9850
  • https://www.mathnet.ru/eng/zvmmf/v53/i5/p691
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025