Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 7, Pages 1212–1224
DOI: https://doi.org/10.7868/S0044466913070168
(Mi zvmmf9833)
 

Recognition of a sequence as a structure containing series of recurring vectors from an alphabet

A. V. Kel'manov, L. V. Mikhailova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: A polynomial-time algorithm is designed for finding an optimal solution of a discrete optimization problem to which a pattern recognition problem is reduced, namely, the noise-proof recognition of a sequence as a structure consisting of contiguous subsequences in the form of series of identical nonzero vectors from an alphabet of vectors in the Euclidean space that alternate with zero vectors.
Key words: discrete optimization problem, polynomial-time algorithm, noise-proof recognition, vector sequence, Euclidean space, series of identical vectors.
Received: 27.12.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 7, Pages 1044–1055
DOI: https://doi.org/10.1134/S0965542513070154
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Kel'manov, L. V. Mikhailova, “Recognition of a sequence as a structure containing series of recurring vectors from an alphabet”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1212–1224; Comput. Math. Math. Phys., 53:7 (2013), 1044–1055
Citation in format AMSBIB
\Bibitem{KelMik13}
\by A.~V.~Kel'manov, L.~V.~Mikhailova
\paper Recognition of a sequence as a structure containing series of recurring vectors from an alphabet
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 7
\pages 1212--1224
\mathnet{http://mi.mathnet.ru/zvmmf9833}
\crossref{https://doi.org/10.7868/S0044466913070168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3255249}
\elib{https://elibrary.ru/item.asp?id=19124106}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 7
\pages 1044--1055
\crossref{https://doi.org/10.1134/S0965542513070154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322134300016}
\elib{https://elibrary.ru/item.asp?id=20446671}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880731118}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9833
  • https://www.mathnet.ru/eng/zvmmf/v53/i7/p1212
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :71
    References:54
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024