Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 7, Pages 1193–1211
DOI: https://doi.org/10.7868/S0044466913070041
(Mi zvmmf9832)
 

This article is cited in 5 scientific papers (total in 5 papers)

Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories

Yu. A. Anikin, O. I. Dodulad

Moscow Institute of Physics and Technology
Full-text PDF (763 kB) Citations (5)
References:
Abstract: A collision integral is constructed taking into account the rotational degrees of freedom of the gas molecules. Its truncation error is shown to be second order in the rotational velocity mesh size. In the solution of the kinetic equation, the resulting collision integral is directly computed using a projection method. Preliminarily, the differential scattering cross sections of nitrogen molecules are computed by applying the method of classical trajectories. The resulting cross section values are tabulated in multimillion data arrays. The one-dimensional problems of shock wave structure and heat transfer between two plates are computed as tests, and the results are compared with experimental data. The convergence of the results with decreasing rotational velocity mesh size is analyzed.
Key words: Boltzmann equation, Wang Chang–Uhlenbeck equation, diatomic gas, molecular dynamics methods, differential scattering cross sections, projection method.
Received: 22.11.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 7, Pages 1026–1043
DOI: https://doi.org/10.1134/S096554251307004X
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: Yu. A. Anikin, O. I. Dodulad, “Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1193–1211; Comput. Math. Math. Phys., 53:7 (2013), 1026–1043
Citation in format AMSBIB
\Bibitem{AniDod13}
\by Yu.~A.~Anikin, O.~I.~Dodulad
\paper Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 7
\pages 1193--1211
\mathnet{http://mi.mathnet.ru/zvmmf9832}
\crossref{https://doi.org/10.7868/S0044466913070041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3255248}
\elib{https://elibrary.ru/item.asp?id=19124105}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 7
\pages 1026--1043
\crossref{https://doi.org/10.1134/S096554251307004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322134300015}
\elib{https://elibrary.ru/item.asp?id=20446646}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880722945}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9832
  • https://www.mathnet.ru/eng/zvmmf/v53/i7/p1193
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :95
    References:85
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024