Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 7, Pages 1051–1057
DOI: https://doi.org/10.7868/S0044466913070028
(Mi zvmmf9818)
 

This article is cited in 9 scientific papers (total in 9 papers)

Some issues concerning approximations of functions by Fourier–Bessel sums

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Daghestan State University
b Daghestan State Technical University
c Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
Full-text PDF (197 kB) Citations (9)
References:
Abstract: Some issues concerning the approximation of one-variable functions from the class $\mathbb{L}_2$ by $n$th-order partial sums of Fourier–Bessel series are studied. Several theorems are proved that estimate the best approximation of a function characterized by the generalized modulus of continuity.
Key words: partial sums of Fourier–Bessel series, approximation of functions from $\mathbb{L}_2$ by Fourier–Bessel series, averaging operator, generalized modulus of continuity, estimate of approximation.
Received: 11.03.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 7, Pages 867–873
DOI: https://doi.org/10.1134/S0965542513070026
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Some issues concerning approximations of functions by Fourier–Bessel sums”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1051–1057; Comput. Math. Math. Phys., 53:7 (2013), 867–873
Citation in format AMSBIB
\Bibitem{AbiAbiKer13}
\by V.~A.~Abilov, F.~V.~Abilova, M.~K.~Kerimov
\paper Some issues concerning approximations of functions by Fourier--Bessel sums
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 7
\pages 1051--1057
\mathnet{http://mi.mathnet.ru/zvmmf9818}
\crossref{https://doi.org/10.7868/S0044466913070028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3255234}
\elib{https://elibrary.ru/item.asp?id=19124091}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 7
\pages 867--873
\crossref{https://doi.org/10.1134/S0965542513070026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322134300001}
\elib{https://elibrary.ru/item.asp?id=20446680}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880735630}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9818
  • https://www.mathnet.ru/eng/zvmmf/v53/i7/p1051
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :167
    References:90
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024