Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 12, Pages 2190–2205 (Mi zvmmf9809)  

This article is cited in 36 scientific papers (total in 36 papers)

Stability estimates in identification problems for the convection-diffusion-reaction equation

G. V. Alekseeva, I. S. Vakhitovb, O. V. Sobolevab

a Far Eastern Federal University, Vladivostok
b Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok
References:
Abstract: Identification problems for the stationary convection-diffusion-reaction equation in a bounded domain with a Dirichlet condition imposed on the boundary of the domain are studied. By applying an optimization method, these problems are reduced to inverse extremum problems in which the variable diffusivity and the volume density of substance sources are used as control functions. Their solvability is proved for an arbitrary weakly lower semicontinuous cost functional and particular cost functionals. An analysis of the optimality system is used to establish sufficient conditions on the input data under which the solutions of particular extremum problems are unique and stable with respect to small perturbations in the cost functional and in one of the functions involved in the boundary value problem.
Key words: mass transfer model, convection-diffusion-reaction equation, variable diffusivity, coefficient inverse problems, stability estimates.
Received: 09.07.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 12, Pages 1635–1649
DOI: https://doi.org/10.1134/S0965542512120032
Bibliographic databases:
Document Type: Article
UDC: 519.34
Language: Russian
Citation: G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Stability estimates in identification problems for the convection-diffusion-reaction equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012), 2190–2205; Comput. Math. Math. Phys., 52:12 (2012), 1635–1649
Citation in format AMSBIB
\Bibitem{AleVakSob12}
\by G.~V.~Alekseev, I.~S.~Vakhitov, O.~V.~Soboleva
\paper Stability estimates in identification problems for the convection-diffusion-reaction equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 12
\pages 2190--2205
\mathnet{http://mi.mathnet.ru/zvmmf9809}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3248190}
\zmath{https://zbmath.org/?q=an:06183575}
\elib{https://elibrary.ru/item.asp?id=18446705}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 12
\pages 1635--1649
\crossref{https://doi.org/10.1134/S0965542512120032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314308700005}
\elib{https://elibrary.ru/item.asp?id=20488013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871300074}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9809
  • https://www.mathnet.ru/eng/zvmmf/v52/i12/p2190
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:605
    Full-text PDF :123
    References:98
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024