Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 12, Pages 2178–2189 (Mi zvmmf9808)  

This article is cited in 6 scientific papers (total in 6 papers)

Correction of improper linear programming problems in canonical form by applying the minimax criterion

O. S. Barkalova

Moscow State Pedagogical University
Full-text PDF (252 kB) Citations (6)
References:
Abstract: Given an inconsistent system of linear algebraic equations, necessary and sufficient conditions are established for the solvability of the problem of its matrix correction by applying the minimax criterion with the assumption that the solution is nonnegative. The form of the solution to the corrected system is presented. Two formulations of the problem are considered, specifically, the correction of both sides of the original system and correction with the right-hand-side vector being fixed. The minimax-criterion correction of an improper linear programming problem is reduced to a linear programming problem, which is solved numerically in MATLAB.
Key words: inconsistent system of linear algebraic equations, improper linear programming problem, matrix correction, minimax criterion, MATLAB.
Received: 26.09.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 12, Pages 1624–1634
DOI: https://doi.org/10.1134/S0965542512120044
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: O. S. Barkalova, “Correction of improper linear programming problems in canonical form by applying the minimax criterion”, Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012), 2178–2189; Comput. Math. Math. Phys., 52:12 (2012), 1624–1634
Citation in format AMSBIB
\Bibitem{Bar12}
\by O.~S.~Barkalova
\paper Correction of improper linear programming problems in canonical form by applying the minimax criterion
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 12
\pages 2178--2189
\mathnet{http://mi.mathnet.ru/zvmmf9808}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3248189}
\zmath{https://zbmath.org/?q=an:06183574}
\elib{https://elibrary.ru/item.asp?id=18446702}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 12
\pages 1624--1634
\crossref{https://doi.org/10.1134/S0965542512120044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314308700004}
\elib{https://elibrary.ru/item.asp?id=20487982}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871295830}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9808
  • https://www.mathnet.ru/eng/zvmmf/v52/i12/p2178
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :132
    References:59
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024