Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 2, Pages 249–262
DOI: https://doi.org/10.7868/S0044466913020026
(Mi zvmmf9780)
 

This article is cited in 3 scientific papers (total in 3 papers)

Numerical solution of the Painlevé VI equation

A. A. Abramova, L. F. Yukhnob

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow
Full-text PDF (266 kB) Citations (3)
References:
Abstract: A numerical method for solving the Cauchy problem for the sixth Painlevé equation is proposed. The difficulty of this problem, as well as the other Painlevé equations, is that the unknown function can have movable singular points of the pole type; moreover, the equation may have singularities at the points where the solution takes the values 0 or 1 or is equal to the independent variable. The positions of all of these singularities are not a priori known and are determined in the process of solving the equation. The proposed method is based on the transition to auxiliary systems of differential equations in neighborhoods of the indicated points. The equations in these systems and their solutions have no singularities at the corresponding point and its neighborhood. The main results of this paper are the derivation of the auxiliary equations and the formulation of transition criteria. Numerical results illustrating the potentials of this method are presented.
Key words: Painlevé VI ordinary differential equation, pole of a solution, singularity of an equation, numerical method, solutions to the Painlevé VI equation.
Received: 28.06.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 2, Pages 180–193
DOI: https://doi.org/10.1134/S0965542513020024
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: A. A. Abramov, L. F. Yukhno, “Numerical solution of the Painlevé VI equation”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 249–262; Comput. Math. Math. Phys., 53:2 (2013), 180–193
Citation in format AMSBIB
\Bibitem{AbrYuk13}
\by A.~A.~Abramov, L.~F.~Yukhno
\paper Numerical solution of the Painlev\'e~VI equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 2
\pages 249--262
\mathnet{http://mi.mathnet.ru/zvmmf9780}
\crossref{https://doi.org/10.7868/S0044466913020026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3249024}
\zmath{https://zbmath.org/?q=an:06188970}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013CMMPh..53..180A}
\elib{https://elibrary.ru/item.asp?id=18737268}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 2
\pages 180--193
\crossref{https://doi.org/10.1134/S0965542513020024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315491100005}
\elib{https://elibrary.ru/item.asp?id=20431842}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874547134}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9780
  • https://www.mathnet.ru/eng/zvmmf/v53/i2/p249
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:378
    Full-text PDF :94
    References:73
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024