Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 2, Pages 181–194
DOI: https://doi.org/10.7868/S0044466913020117
(Mi zvmmf9775)
 

This article is cited in 10 scientific papers (total in 10 papers)

Iterative method for constructing coverings of the multidimensional unit sphere

G. K. Kameneva, A. V. Lotova, T. S. Mayskayab

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: The stepwise-supplement-of-a-covering (SSC) method is described and examined. The method is intended for the numerical construction of near optimal coverings of the multidimensional unit sphere by neighborhoods of a finite number of points (covering basis). Coverings of the unit sphere are used, for example, in nonadaptive polyhedral approximation of multidimensional convex compact bodies based on the evaluation of their support function for directions defined by points of the covering basis. The SSC method is used to iteratively construct a sequence of coverings, each differing from the previous one by a single new point included in the covering basis. Although such coverings are not optimal, it is theoretically shown that they are asymptotically suboptimal. By applying an experimental analysis, the asymptotic efficiency of the SSC method is estimated and the method is shown to be relatively efficient for a small number of points in the covering basis.
Key words: methods for covering the multidimensional unit sphere, interactive method, stepwise-supplement-of-a-covering method, asymptotically suboptimal covering.
Received: 18.08.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 2, Pages 131–143
DOI: https://doi.org/10.1134/S0965542513020085
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: G. K. Kamenev, A. V. Lotov, T. S. Mayskaya, “Iterative method for constructing coverings of the multidimensional unit sphere”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 181–194; Comput. Math. Math. Phys., 53:2 (2013), 131–143
Citation in format AMSBIB
\Bibitem{KamLotMai13}
\by G.~K.~Kamenev, A.~V.~Lotov, T.~S.~Mayskaya
\paper Iterative method for constructing coverings of the multidimensional unit sphere
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 2
\pages 181--194
\mathnet{http://mi.mathnet.ru/zvmmf9775}
\crossref{https://doi.org/10.7868/S0044466913020117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3249020}
\zmath{https://zbmath.org/?q=an:06188965}
\elib{https://elibrary.ru/item.asp?id=18737263}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 2
\pages 131--143
\crossref{https://doi.org/10.1134/S0965542513020085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315491100001}
\elib{https://elibrary.ru/item.asp?id=20431735}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874522242}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9775
  • https://www.mathnet.ru/eng/zvmmf/v53/i2/p181
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024