Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 11, Pages 1952–1958 (Mi zvmmf9748)  

This article is cited in 2 scientific papers (total in 2 papers)

Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials

V. A. Abilova, M. K. Kerimovb

a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (185 kB) Citations (2)
References:
Abstract: Two-variable functions $f(x,y)$ from the class $L_2=L_2((a,b)\times(c,d);p(x)q(y))$ with the weight $p(x)q(y)$ and the norm
$$ ||f||=\sqrt{\int_a^b\int_c^dp(x)q(x)f^2(x,y)dx\,dy} $$
are approximated by an orthonormal system of orthogonal $P_n(x)Q_n(y)$, $n, m=0, 1,\dots$, with weights $p(x)$ and $q(y)$. Let
$$ E_N(f)=\inf_{P_N}||f-P_N|| $$
denote the best approximation of $f\in L_2$ algebraic polynomials of the form
\begin{gather*} P_N(x,y)=\sum_{0<n,m<N}a_{m,n}x^ny^m,\\ P_1(x,y)=\mathrm{const}. \end{gather*}
Consider a double Fourier series of $f\in L_2$ in the polynomials $P_n(x)Q_m(y)$, $n, m=0, 1,\dots$, and its “hyperbolic” partial sums
\begin{gather*} S_1(f; x,y)=c_{0,0}(f)P_0(x)Q_0(y),\\ S_N(f; x,y)=\sum_{0<n,m<N}c_{n,m}(f)P_n(x)Q_m(y),\qquad N=2,3,\dots. \end{gather*}
A generalized shift operator $F_h$ and a $k$th-order generalized modulus of continuity $\Omega_k(A,h)$ of a function $f\in L_2$ are used to prove the following sharp estimate for the convergence rate of the approximation:
\begin{gather*} E_N(f)\leqslant(1-(1-h)^{2\sqrt{N}})^{-k}\,\Omega_k(f; h), \qquad h\in(0,1),\\ N=4,5,\dots;\qquad k=1,2,\dots. \end{gather*}
Moreover, for every fixed $N=4,9,16,\dots$, the constant on the right-hand side of this inequality is cannot be reduced.
Key words: double Fourier series, “hyperbolic” partial sum of Fourier series, best approximation of functions by algebraic polynomials in two variables, generalized shift operator, generalized modulus of continuity.
Received: 15.06.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 11, Pages 1497–1503
DOI: https://doi.org/10.1134/S0965542512110024
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: V. A. Abilov, M. K. Kerimov, “Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 1952–1958; Comput. Math. Math. Phys., 52:11 (2012), 1497–1503
Citation in format AMSBIB
\Bibitem{AbiKer12}
\by V.~A.~Abilov, M.~K.~Kerimov
\paper Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 11
\pages 1952--1958
\mathnet{http://mi.mathnet.ru/zvmmf9748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3247699}
\elib{https://elibrary.ru/item.asp?id=18059282}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 11
\pages 1497--1503
\crossref{https://doi.org/10.1134/S0965542512110024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314305700003}
\elib{https://elibrary.ru/item.asp?id=20487359}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869748505}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9748
  • https://www.mathnet.ru/eng/zvmmf/v52/i11/p1952
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :100
    References:59
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024