|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 11, Pages 1952–1958
(Mi zvmmf9748)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
V. A. Abilova, M. K. Kerimovb a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Abstract:
Two-variable functions $f(x,y)$ from the class $L_2=L_2((a,b)\times(c,d);p(x)q(y))$ with the weight $p(x)q(y)$ and the norm
$$
||f||=\sqrt{\int_a^b\int_c^dp(x)q(x)f^2(x,y)dx\,dy}
$$
are approximated by an orthonormal system of orthogonal $P_n(x)Q_n(y)$, $n, m=0, 1,\dots$, with weights $p(x)$ and $q(y)$. Let
$$
E_N(f)=\inf_{P_N}||f-P_N||
$$
denote the best approximation of $f\in L_2$ algebraic polynomials of the form
\begin{gather*}
P_N(x,y)=\sum_{0<n,m<N}a_{m,n}x^ny^m,\\
P_1(x,y)=\mathrm{const}.
\end{gather*}
Consider a double Fourier series of $f\in L_2$ in the polynomials $P_n(x)Q_m(y)$, $n, m=0, 1,\dots$, and its “hyperbolic” partial sums
\begin{gather*}
S_1(f; x,y)=c_{0,0}(f)P_0(x)Q_0(y),\\
S_N(f; x,y)=\sum_{0<n,m<N}c_{n,m}(f)P_n(x)Q_m(y),\qquad N=2,3,\dots.
\end{gather*}
A generalized shift operator $F_h$ and a $k$th-order generalized modulus of continuity $\Omega_k(A,h)$ of a function $f\in L_2$
are used to prove the following sharp estimate for the convergence rate of the approximation:
\begin{gather*}
E_N(f)\leqslant(1-(1-h)^{2\sqrt{N}})^{-k}\,\Omega_k(f; h), \qquad h\in(0,1),\\
N=4,5,\dots;\qquad k=1,2,\dots.
\end{gather*}
Moreover, for every fixed $N=4,9,16,\dots$, the constant on the right-hand side of this inequality is cannot be reduced.
Key words:
double Fourier series, “hyperbolic” partial sum of Fourier series, best approximation of functions by algebraic polynomials in two variables, generalized shift operator, generalized modulus of continuity.
Received: 15.06.2012
Citation:
V. A. Abilov, M. K. Kerimov, “Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 1952–1958; Comput. Math. Math. Phys., 52:11 (2012), 1497–1503
Linking options:
https://www.mathnet.ru/eng/zvmmf9748 https://www.mathnet.ru/eng/zvmmf/v52/i11/p1952
|
Statistics & downloads: |
Abstract page: | 308 | Full-text PDF : | 100 | References: | 59 | First page: | 16 |
|