Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 8, Pages 1415–1425 (Mi zvmmf9726)  

This article is cited in 8 scientific papers (total in 8 papers)

Flux-splitting schemes for parabolic problems

P. N. Vabishchevich

Nuclear Safety Institute, Russian Academy of Sciences, Bol’shaya Tul’skya ul. 52, Moscow, 115191 Russia
Full-text PDF (474 kB) Citations (8)
References:
Abstract: Splitting with respect to space variables can be used in solving boundary value problems for second-order parabolic equations. Classical alternating direction methods and locally one-dimensional schemes could be examples of this approach. For problems with rapidly varying coefficients, a convenient tool is the use of fluxes (directional derivatives) as independent variables. The original equation is written as a system in which not only the desired solution but also directional derivatives (fluxes) are unknowns. In this paper, locally one-dimensional additional schemes (splitting schemes) for second-order parabolic equations are examined. By writing the original equation in flux variables, certain two-level locally one-dimensional schemes are derived. The unconditional stability of locally one-dimensional flux schemes of the first and second approximation order with respect to time is proved.
Key words: Cauchy problem, second-order parabolic equation, operator-difference schemes, splitting schemes.
Received: 18.01.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 8, Pages 1128–1138
DOI: https://doi.org/10.1134/S0965542512080106
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: P. N. Vabishchevich, “Flux-splitting schemes for parabolic problems”, Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1415–1425; Comput. Math. Math. Phys., 52:8 (2012), 1128–1138
Citation in format AMSBIB
\Bibitem{Vab12}
\by P.~N.~Vabishchevich
\paper Flux-splitting schemes for parabolic problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 8
\pages 1415--1425
\mathnet{http://mi.mathnet.ru/zvmmf9726}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245236}
\elib{https://elibrary.ru/item.asp?id=17845616}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 8
\pages 1128--1138
\crossref{https://doi.org/10.1134/S0965542512080106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307883700005}
\elib{https://elibrary.ru/item.asp?id=20471573}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865475468}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9726
  • https://www.mathnet.ru/eng/zvmmf/v52/i8/p1415
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :159
    References:83
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024