Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 5, Pages 818–828 (Mi zvmmf9711)  

This article is cited in 4 scientific papers (total in 4 papers)

Polyhedral approximation of convex compact bodies by filling methods

G. K. Kameneva, A. I. Pospelovb

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
Full-text PDF (234 kB) Citations (4)
References:
Abstract: A class of iterative methods – filling methods – for polyhedral approximation of convex compact bodies is introduced and studied. In contrast to augmentation methods, the vertices of the approximating polytope can lie not only on the boundary of the body but also inside it. Within the proposed class, Hausdorff or $H$-methods of filling are singled out, for which the convergence rates (asymptotic and at the initial stage of the approximation) are estimated. For the approximation of nonsmooth convex compact bodies, the resulting convergence rate estimates coincide with those for augmentation $H$-methods.
Key words: convex sets, polytopes, iterative algorithms, polyhedral approximation, convergence rate of an algorithm.
Received: 04.05.2011
Revised: 27.11.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 5, Pages 680–690
DOI: https://doi.org/10.1134/S0965542512050119
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: G. K. Kamenev, A. I. Pospelov, “Polyhedral approximation of convex compact bodies by filling methods”, Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012), 818–828; Comput. Math. Math. Phys., 52:5 (2012), 680–690
Citation in format AMSBIB
\Bibitem{KamPos12}
\by G.~K.~Kamenev, A.~I.~Pospelov
\paper Polyhedral approximation of convex compact bodies by filling methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 5
\pages 818--828
\mathnet{http://mi.mathnet.ru/zvmmf9711}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3244985}
\elib{https://elibrary.ru/item.asp?id=17726651}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 5
\pages 680--690
\crossref{https://doi.org/10.1134/S0965542512050119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304444000003}
\elib{https://elibrary.ru/item.asp?id=17986804}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861489716}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9711
  • https://www.mathnet.ru/eng/zvmmf/v52/i5/p818
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :99
    References:58
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024