|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 5, Pages 775–783
(Mi zvmmf9707)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Conditions for unique solvability of the matrix equation $AX+X^\ast B=C$
Yu. O. Vorontsov, Kh. D. Ikramov M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Abstract:
Conditions for the unique solvability of the matrix equation $AX+X^\ast B=C$ are formulated in terms of the eigenvalues and the Kronecker structure of the matrix pencil $A+\lambda B^\ast$ associated with this equation.
Key words:
Sylvester matrix equations, equivalence transformations, regular pencil, Weierstrass canonical form, singular pencil, Kronecker canonical form.
Citation:
Yu. O. Vorontsov, Kh. D. Ikramov, “Conditions for unique solvability of the matrix equation $AX+X^\ast B=C$”, Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012), 775–783; Comput. Math. Math. Phys., 52:5 (2012), 665–673
Linking options:
https://www.mathnet.ru/eng/zvmmf9707 https://www.mathnet.ru/eng/zvmmf/v52/i5/p775
|
Statistics & downloads: |
Abstract page: | 567 | Full-text PDF : | 226 | References: | 96 | First page: | 91 |
|