Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 8, Pages 1373–1377 (Mi zvmmf9704)  

This article is cited in 1 scientific paper (total in 1 paper)

Estimation of the remainder of a cubature formula on a Chebyshev grid

V. A. Abilov, M. K. Kerimov

Daghestan State University
Full-text PDF (179 kB) Citations (1)
References:
Abstract: Let $C(Q)$ denote the space of continuous functions $f(x,y)$ in the square $Q=[-1,1]\times[-1,1]$ with the norm
\begin{equation} \| f\|=\max(|(f(x,y)|), \quad (x,y)\in Q \end{equation}
On a Chebyshev grid, a cubature formula of the form
\begin{eqnarray} &\int_{-1}^1\int_{-1}^1\frac{1}{\sqrt{(1-x^2)(1-y^2)}}f(x,y)dxdy= \\ &\frac{\pi^2}{mn}\sum_{i=1}^n\sum_{j=1}^mf\big (\cos\frac{2i-1}{2n}\pi,cos\frac{2j-1}{2m}\pi\big )+R_{m,n}(f) \end{eqnarray}
is considered in some class $H(r_1,r_2)$ of functions $f\in C(Q)$, defined by a generalized shift operator. The remainder $R_{m,n}(f)$ is proved to satisfy the estimate:
$$ \sup_{f\in H(r_1,r_2)}| R_{m,n}(f) |=O(n^{-r_1+1}+m^{-r_2+1}) $$
where $r_1,r_2>1,\lambda^{-1}\leq n/m\leq\lambda,\lambda>0$; and the constant in $O(1)$, depends on $\lambda$. Библ. 4. Ключевые слова: кубатурная формула, чебышевская сетка, оценка остаточного члена.
Received: 21.03.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 8, Pages 1089–1093
DOI: https://doi.org/10.1134/S0965542512080027
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: V. A. Abilov, M. K. Kerimov, “Estimation of the remainder of a cubature formula on a Chebyshev grid”, Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1373–1377; Comput. Math. Math. Phys., 52:8 (2012), 1089–1093
Citation in format AMSBIB
\Bibitem{AbiKer12}
\by V.~A.~Abilov, M.~K.~Kerimov
\paper Estimation of the remainder of a~cubature formula on a~Chebyshev grid
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 8
\pages 1373--1377
\mathnet{http://mi.mathnet.ru/zvmmf9704}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245233}
\elib{https://elibrary.ru/item.asp?id=17845613}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 8
\pages 1089--1093
\crossref{https://doi.org/10.1134/S0965542512080027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307883700002}
\elib{https://elibrary.ru/item.asp?id=20472042}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865528217}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9704
  • https://www.mathnet.ru/eng/zvmmf/v52/i8/p1373
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :84
    References:47
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024