Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 8, Pages 1492–1505 (Mi zvmmf9695)  

This article is cited in 21 scientific papers (total in 21 papers)

Potential-based numerical solution of Dirichlet problems for the Helmholtz equation

A. A. Kashirin, S. I. Smagin

Computing Center, Far East Branch, Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680000 Russia
References:
Abstract: Three-dimensional Dirichlet problems for the Helmholtz equation are considered in generalized formulations. By applying single-layer potentials, they are reduced to Fredholm boundary integral equations of the first kind. The equations are discretized using a special averaging method for integral operators with weak singularities in the kernels. As a result, the integral equations are approximated by systems of linear algebraic equations with easy-to-compute coefficients, which are solved numerically by applying the generalized minimal residual method. A modification of the method is proposed that yields solutions in the spectra of interior Dirichlet problems and integral operators when the integral equations are not equivalent to the original differential problems and are not well-posed. Numerical results are presented for assessing the capabilities of the approach.
Key words: Dirichlet problem, Helmholtz equation, boundary integral equation, spectrum of an integral operator, numerical method.
Received: 24.05.2011
Revised: 10.09.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 8, Pages 1173–1185
DOI: https://doi.org/10.1134/S0965542512080052
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. A. Kashirin, S. I. Smagin, “Potential-based numerical solution of Dirichlet problems for the Helmholtz equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1492–1505; Comput. Math. Math. Phys., 52:8 (2012), 1173–1185
Citation in format AMSBIB
\Bibitem{KasSma12}
\by A.~A.~Kashirin, S.~I.~Smagin
\paper Potential-based numerical solution of Dirichlet problems for the Helmholtz equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 8
\pages 1492--1505
\mathnet{http://mi.mathnet.ru/zvmmf9695}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245240}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52.1173K}
\elib{https://elibrary.ru/item.asp?id=17845622}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 8
\pages 1173--1185
\crossref{https://doi.org/10.1134/S0965542512080052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307883700009}
\elib{https://elibrary.ru/item.asp?id=20472050}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865528863}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9695
  • https://www.mathnet.ru/eng/zvmmf/v52/i8/p1492
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:694
    Full-text PDF :283
    References:83
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024