Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 2, Pages 253–262 (Mi zvmmf9655)  

This article is cited in 3 scientific papers (total in 3 papers)

Construction of splitting schemes based on transition operator approximation

P. N. Vabishchevich

Nuclear Safety Institute, Russian Academy of Sciences, Bol’shaya Tul’skaya ul. 52, Moscow, 115191 Russia
Full-text PDF (503 kB) Citations (3)
References:
Abstract: The stability analysis of approximate solutions to unsteady problems for partial differential equations is usually based on the use of the canonical form of operator-difference schemes. Another possibility widely used in the analysis of methods for solving Cauchy problems for systems of ordinary differential equations is associated with the estimation of the norm of the transition operator from the current time level to a new one. The stability of operator-difference schemes for a first-order model operator-differential equation is discussed. Primary attention is given to the construction of additive schemes (splitting schemes) based on approximations of the transition operator. Specifically, classical factorized schemes, componentwise splitting schemes, and regularized operator-difference schemes are related to the use of a certain multiplicative transition operator. Additive averaged operator-difference schemes are based on an additive representation of the transition operator. The construction of second-order splitting schemes in time is discussed. Inhomogeneous additive operator-difference schemes are constructed in which various types of transition operators are used for individual splitting operators.
Key words: Cauchy problem, first-order evolution equation, operator-difference schemes, splitting schemes.
Received: 14.06.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 2, Pages 235–244
DOI: https://doi.org/10.1134/S0965542512020157
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. N. Vabishchevich, “Construction of splitting schemes based on transition operator approximation”, Zh. Vychisl. Mat. Mat. Fiz., 52:2 (2012), 253–262; Comput. Math. Math. Phys., 52:2 (2012), 235–244
Citation in format AMSBIB
\Bibitem{Vab12}
\by P.~N.~Vabishchevich
\paper Construction of splitting schemes based on transition operator approximation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 2
\pages 253--262
\mathnet{http://mi.mathnet.ru/zvmmf9655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2953314}
\zmath{https://zbmath.org/?q=an:06057660}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52..235V}
\elib{https://elibrary.ru/item.asp?id=17353060}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 2
\pages 235--244
\crossref{https://doi.org/10.1134/S0965542512020157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303535300008}
\elib{https://elibrary.ru/item.asp?id=17977504}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857527935}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9655
  • https://www.mathnet.ru/eng/zvmmf/v52/i2/p253
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024