Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 1, Pages 4–7 (Mi zvmmf9632)  

This article is cited in 12 scientific papers (total in 12 papers)

Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm

Kh. D. Ikramov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992 Russia
References:
Abstract: Takagi’s decomposition is an analog (for complex symmetric matrices and for unitary similarities replaced by unitary congruences) of the eigenvalue decomposition of Hermitian matrices. It is shown that, if a complex matrix is not only symmetric but is also unitary, then its Takagi decomposition can be found by quadratic radicals, that is, by means of a finite algorithm that involves arithmetic operations and quadratic radicals. A similar fact is valid for the eigenvalue decomposition of reflections, which are Hermitian unitary matrices.
Key words: unitary matrices, symmetric matrices, Takagi’s decomposition, solvability by quadratic radicals.
Received: 08.07.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 1, Pages 1–3
DOI: https://doi.org/10.1134/S0965542512010034
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: Kh. D. Ikramov, “Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm”, Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012), 4–7; Comput. Math. Math. Phys., 52:1 (2012), 1–3
Citation in format AMSBIB
\Bibitem{Ikr12}
\by Kh.~D.~Ikramov
\paper Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 1
\pages 4--7
\mathnet{http://mi.mathnet.ru/zvmmf9632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2953288}
\zmath{https://zbmath.org/?q=an:06057669}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52....1I}
\elib{https://elibrary.ru/item.asp?id=17313418}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 1
\pages 1--3
\crossref{https://doi.org/10.1134/S0965542512010034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300287300001}
\elib{https://elibrary.ru/item.asp?id=17975541}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856647659}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9632
  • https://www.mathnet.ru/eng/zvmmf/v52/i1/p4
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024