Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 6, Pages 1069–1071 (Mi zvmmf9624)  

On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation

A. V. Gasnikov

Moscow Institute of Physics and Technology
References:
Abstract: An upper bound on the distance between the centers of two successive traveling waves occurring in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation is established under generic conditions. Taking into account a previously established lower bound, an asymptotically sharper estimate is derived.
Key words: Burgers-type equation, asymptotics, phase shift.
Received: 25.08.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 6, Pages 937–939
DOI: https://doi.org/10.1134/S0965542512060085
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. V. Gasnikov, “On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1069–1071; Comput. Math. Math. Phys., 52:6 (2012), 937–939
Citation in format AMSBIB
\Bibitem{Gas12}
\by A.~V.~Gasnikov
\paper On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 6
\pages 1069--1071
\mathnet{http://mi.mathnet.ru/zvmmf9624}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245179}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52..937G}
\elib{https://elibrary.ru/item.asp?id=17745734}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 6
\pages 937--939
\crossref{https://doi.org/10.1134/S0965542512060085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305735100010}
\elib{https://elibrary.ru/item.asp?id=20472845}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863211646}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9624
  • https://www.mathnet.ru/eng/zvmmf/v52/i6/p1069
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :101
    References:68
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024