Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 6, Pages 1042–1047 (Mi zvmmf9620)  

This article is cited in 7 scientific papers (total in 7 papers)

The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation

N. N. Nefedov, A. G. Nikitin

M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (188 kB) Citations (7)
References:
Abstract: The initial boundary value problem for a nonlinear singularly perturbed integro-parabolic equation is examined. An asymptotic expansion of the solution to this problem containing the temporal, spatial and corner boundary layers is constructed. The existence and local uniqueness of the solution is justified by using the asymptotic method of differential inequalities.
Key words: reaction–diffusion problem, singularly perturbed integro-parabolic equation, boundary layers, asymptotic expansion of solution.
Received: 30.06.2011
Revised: 15.12.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 6, Pages 926–931
DOI: https://doi.org/10.1134/S0965542512060115
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: N. N. Nefedov, A. G. Nikitin, “The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1042–1047; Comput. Math. Math. Phys., 52:6 (2012), 926–931
Citation in format AMSBIB
\Bibitem{NefNik12}
\by N.~N.~Nefedov, A.~G.~Nikitin
\paper The initial boundary value problem for a nonlocal singularly perturbed reaction--diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 6
\pages 1042--1047
\mathnet{http://mi.mathnet.ru/zvmmf9620}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245177}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52..926N}
\elib{https://elibrary.ru/item.asp?id=17745730}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 6
\pages 926--931
\crossref{https://doi.org/10.1134/S0965542512060115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305735100008}
\elib{https://elibrary.ru/item.asp?id=20472819}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863202351}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9620
  • https://www.mathnet.ru/eng/zvmmf/v52/i6/p1042
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:332
    Full-text PDF :109
    References:60
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024