Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 6, Pages 1002–1009 (Mi zvmmf9618)  

This article is cited in 4 scientific papers (total in 4 papers)

SM-stability of operator-difference schemes

P. N. Vabishchevich

Nuclear Safety Institute, RAS
Full-text PDF (189 kB) Citations (4)
References:
Abstract: The spectral mimetic (SM) properties of operator-difference schemes for solving the Cauchy problem for first-order evolutionary equations concern the time evolution of individual harmonics of the solution. Keeping track of the spectral characteristics makes it possible to select more appropriate approximations with respect to time. Among two-level implicit schemes of improved accuracy based on Padй approximations, SM-stability holds for schemes based on polynomial approximations if the operator in an evolutionary equation is self-adjoint and for symmetric schemes if the operator is skew-symmetric. In this paper, additive schemes (also called splitting schemes) are constructed for evolutionary equations with general operators. These schemes are based on the extraction of the self-adjoint and skew-symmetric components of the corresponding operator.
Key words: Cauchy problem, first-order evolutionary equation, operator-difference schemes, stability.
Received: 18.04.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 6, Pages 887–894
DOI: https://doi.org/10.1134/S0965542512060140
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. N. Vabishchevich, “SM-stability of operator-difference schemes”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1002–1009; Comput. Math. Math. Phys., 52:6 (2012), 887–894
Citation in format AMSBIB
\Bibitem{Vab12}
\by P.~N.~Vabishchevich
\paper SM-stability of operator-difference schemes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 6
\pages 1002--1009
\mathnet{http://mi.mathnet.ru/zvmmf9618}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245175}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52..887V}
\elib{https://elibrary.ru/item.asp?id=17745728}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 6
\pages 887--894
\crossref{https://doi.org/10.1134/S0965542512060140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305735100006}
\elib{https://elibrary.ru/item.asp?id=20472832}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863207101}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9618
  • https://www.mathnet.ru/eng/zvmmf/v52/i6/p1002
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :110
    References:66
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024